6.已知函數(shù)f(x)=ax+bsinx(0<x<$\frac{π}{2}$),若a≠b且a,b∈{-2,0,1,2},則f(x)的圖象上任一點處的切線斜率都非負的概率為$\frac{7}{12}$.

分析 首先求出函數(shù)的導數(shù),根據(jù)題意找出所有事件以滿足圖象上任一點處的切線斜率都非負的事件個數(shù),利用公式解答.

解答 解:f'(x)=a+bcosx,(0<x<$\frac{π}{2}$),
a≠b且a,b∈{-2,0,1,2},從其中任意選兩個組成不同的值共有${A}_{4}^{2}$=12個;使斜率為負值的有7個,則f(x)的圖象上任一點處的切線斜率都非負的$\frac{7}{12}$;
故答案為:$\frac{7}{12}$.

點評 本題考查了函數(shù)與導數(shù)的關系以及概率求法;關鍵是明確事件的個數(shù)以及滿足條件的事件個數(shù),利用公式解答.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{x≥1}\\{y≥0}\end{array}\right.$,則z=x+2y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{x-3y≤0}\\{x+2y-5≤0}\end{array}\right.$,則點(x,y)所在的平面區(qū)域的面積為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{1-x,0<x<1}\\{\sqrt{x-1},x≥1}\end{array}\right.$,若a<b<c,f(a)=f(b)=f(c),則實數(shù)a+3b+c的取值范圍是(-∞,$\frac{11}{4}-ln2$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$\overrightarrow{a}$=(6,1),$\overrightarrow$=(-2,2),若單位向量$\overrightarrow{c}$與2$\overrightarrow{a}$+3$\overrightarrow$共線,則向量$\overrightarrow{c}$的坐標為($\frac{3}{5}$,$\frac{4}{5}$)或(-$\frac{3}{5}$,-$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.定義:對于項數(shù)為m的有窮數(shù)列{an},令bk為a1,a2,…ak(k≤m)(m>3)中的最大值,稱數(shù)列{bn}為{an}的伴隨數(shù)列,例如數(shù)列3,6,8,7的伴隨數(shù)列為3,6,8,8.考查自然數(shù)1,2,…m(m>3)的所有排列,將每種排列都視為一個有窮數(shù)列{cn},若m=4,則伴隨數(shù)列為1,4,4,4的所有數(shù)列{cn} 為1,4,2,3或1,4,3,2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,其兼具文化性和社會性,是精神文明建設成果的一個重要指標和象征.2015年某高校社會實踐小組對某小區(qū)廣場舞的開展狀況進行了年齡的調(diào)查,隨機抽取了40名廣場舞者,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如圖的頻率分布直方圖.
(1)估計在40名廣場舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場舞者年齡的中位數(shù)和平均數(shù)的估計值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,
①求這2名廣場舞者年齡不都在[20,30)的概率;
②求這兩名廣場舞者中年齡在[30,40)的人數(shù)X的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,且2Sn=3an-2n.
(I)證明:數(shù)列{an+1}為等比數(shù)列;
(2)求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.數(shù)列{an}中,若Sn=n4+9n-3,則a2=24.

查看答案和解析>>

同步練習冊答案