分析 數列{an}當n≥2時滿足$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$,可得數列$\{\frac{1}{{a}_{n}}\}$是等差數列,設公差為d.由$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{7}}$=9,可得$\frac{3}{{a}_{5}}$=9,解得$\frac{1}{{a}_{5}}$=3.由a3a5a7=$\frac{1}{24}$,可得$\frac{1}{{a}_{3}{a}_{5}{a}_{7}}$=24,因此(3-2d)×3×(3+2d)=24,解出d,進而得出.
解答 解:∵數列{an}當n≥2時滿足$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$,
∴數列$\{\frac{1}{{a}_{n}}\}$是等差數列,設公差為d.
∵$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{7}}$=9,
∴$\frac{3}{{a}_{5}}$=9,解得$\frac{1}{{a}_{5}}$=3.
∵a3a5a7=$\frac{1}{24}$,∴$\frac{1}{{a}_{3}{a}_{5}{a}_{7}}$=24,
∴(3-2d)×3×(3+2d)=24,
解得d=$±\frac{1}{2}$.
d=$\frac{1}{2}$時,$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{5}}$+(n-5)d=3+$\frac{1}{2}(n-5)$=$\frac{n+1}{2}$.
∴S4=$\frac{2+3+4+5}{2}$=7.
d=-$\frac{1}{2}$時,$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{5}}$+(n-5)d=3-$\frac{1}{2}(n-5)$=$\frac{11-n}{2}$.(舍去,n=11時不存在).
綜上可得:S4=7.
故答案為:7.
點評 本題考查了等差數列的通項公式及其求和公式與性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | p∧q | B. | p∨q | C. | (?p)∧(?q) | D. | (?p)∨q |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | c<a<b | B. | a<b<c | C. | c<b<a | D. | b<c<a |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com