分析 $\overrightarrow{a},\overrightarrow$的夾角為60°,由($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0可知向量C的終點(diǎn)在以$\overrightarrow{a},\overrightarrow$的終點(diǎn)連線為直徑的圓上,建立平面直角坐標(biāo)系,設(shè)$\overrightarrow{c}$=(x,y)代入數(shù)量積的坐標(biāo)公式得出函數(shù)的最大值.
解答 解:設(shè)$\overrightarrow{a},\overrightarrow$的夾角為θ,則$\overrightarrow{a}•\overrightarrow$=2×2×cosθ=2,
∴cos$θ=\frac{1}{2}$,即$θ=\frac{π}{3}$.
在平面直角坐標(biāo)系中,設(shè)$\overrightarrow{a}$=$\overrightarrow{OA}$=(2,0),$\overrightarrow=\overrightarrow{OB}$=(1,$\sqrt{3}$).$\overrightarrow{c}=\overrightarrow{OC}$
∵($\overrightarrow{c}$-$\overrightarrow{a}$)•($\overrightarrow{c}$-$\overrightarrow$)=0,
∴$\overrightarrow{AC}⊥\overrightarrow{BC}$,即C的軌跡為以AB為直徑的圓.
∴C的軌跡方程為(x-$\frac{3}{2}$)2+(y-$\frac{\sqrt{3}}{2}$)2=1.
設(shè)C(x,y),則$\overrightarrow{c}•\overrightarrow{a}$=2x.
∴當(dāng)x取得最大值$\frac{5}{2}$時(shí),$\overrightarrow{c}•\overrightarrow{a}$取得最大值5.
故答案為:5.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,結(jié)合圖形及向量的幾何意義得出C的軌跡是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 6 | C. | 24 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 3 | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com