如圖是各條棱長(zhǎng)均為2的正四面體的三視圖,則正視圖三角形的面積為( 。
A、
3
B、
2
3
6
C、2
3
D、
4
3
6
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:三視圖中長(zhǎng)對(duì)正,高對(duì)齊,寬相等,由題意確定正視圖三角形的底邊長(zhǎng)與高.
解答: 解:∵是各條棱長(zhǎng)均為2的正四面體的三視圖,
∴正視圖的底邊長(zhǎng)為2,
高為
22-(2•
3
2
2
3
)2
=
2
6
3
,
則S=
1
2
×2×
2
6
3
=
2
6
3

故選B.
點(diǎn)評(píng):三視圖中長(zhǎng)對(duì)正,高對(duì)齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,本題考查了學(xué)生的空間想象力,識(shí)圖能力及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的不等式ax>1,(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(x2-x+a)的定義域?yàn)镽,若p∨q為真p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)
3-i
2+i
(i為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的內(nèi)角A,B,C的對(duì)邊a,b,c成等差數(shù)列,且5sinA=7sinB,則角A=( 。
A、
π
3
B、
3
C、
4
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在?ABCD中,O是對(duì)角線AC與BD的交點(diǎn),E是BC邊的中點(diǎn),連接DE交AC于點(diǎn)F.已知
AB
=
a
AD
=
b
,則
OF
=
 
(用
a
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ex
(1)若函數(shù)φ(x)=-x+f(-x),當(dāng)x∈[-e,0)時(shí),求φ(x)的值域.
(2)設(shè)直線l為函數(shù)f(x)的圖象上一點(diǎn)A(x0,f(x0))處切線.證明:在區(qū)間(1,+∞)上存在唯一的x0使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1,的離心率e=
5
5
,以?xún)蓚(gè)焦點(diǎn)F1,F(xiàn)2和短軸的兩個(gè)端點(diǎn)B1,B2為頂點(diǎn)的四邊形F1B1F2B2的面積為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(4,0)的直線l與橢圓C交于A,B兩點(diǎn),若線段AB的中點(diǎn)落在F1B1F2B2四邊形內(nèi)(含邊界),求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中,AB=2CD=2AD,AD⊥AB,將△ADC沿AC這起,使平面ADC⊥平面ABC,得到幾何體D-ABC.

(Ⅰ)求證:BC⊥AD;
(Ⅱ)點(diǎn)M是線段DB上的一點(diǎn),當(dāng)二面角M-AC-D的大小為時(shí)
π
3
時(shí),求
DM
NB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知命題p:方程
x2
5-k
+
y2
k+1
=1表示焦點(diǎn)在y軸上的橢圓,命題q:方程
x2
5-k
+
y2
k+1
=1表示雙曲線.如果p∨q為真,p∧q為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案