1.已知點(diǎn)P在直線x+3y-2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0,y0),且y0<x0+2,則$\frac{y_0}{x_0}$的取值范圍是( 。
A.[-$\frac{1}{3}$,0)B.(-$\frac{1}{3}$,0)C.(-$\frac{1}{3}$,+∞)D.(-∞,-$\frac{1}{3}$)∪(0,+∞)

分析 由題意可得,線段PQ的中點(diǎn)為M(x0,y0)到兩直線的距離相等,利用$\frac{|{x}_{0}+3{y}_{0}-2|}{\sqrt{10}}=\frac{|{x}_{0}+3{y}_{0}+6|}{\sqrt{10}}$,可得x0+3y0+2=0.
又y0<x0+2,設(shè)$\frac{y_0}{x_0}$=kOM,分類討論:當(dāng)點(diǎn)位于線段AB(不包括端點(diǎn))時(shí),當(dāng)點(diǎn)位于射線BM(不包括端點(diǎn)B)時(shí),即可得出.

解答 解:∵點(diǎn)P在直線x+3y-2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0,y0),
∴$\frac{|{x}_{0}+3{y}_{0}-2|}{\sqrt{10}}=\frac{|{x}_{0}+3{y}_{0}+6|}{\sqrt{10}}$,化為x0+3y0+2=0.
又y0<x0+2,
設(shè)$\frac{{y}_{0}}{{x}_{0}}$=kOM,
當(dāng)點(diǎn)位于線段AB(不包括端點(diǎn))時(shí),則kOM>0,當(dāng)點(diǎn)位于射線BM(不包括端點(diǎn)B)時(shí),kOM<-$\frac{1}{3}$.
∴$\frac{{y}_{0}}{{x}_{0}}$的取值范圍是(-∞,-$\frac{1}{3}$)∪(0,+∞).
故選:D.

點(diǎn)評 本題考查了平行線的性質(zhì)、點(diǎn)到直線的距離公式、線性規(guī)劃的知識(shí)、斜率的意義及其應(yīng)用,考查了數(shù)形結(jié)合的思想方法、計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b∈(0,1),則函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.Sn為等比數(shù)列{an}的前n項(xiàng)和,滿足Sn=2an-1,則{an}的公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)=$\frac{4^x}{{2+{4^x}}}$,記[m]表示不超過實(shí)數(shù)m的最大整數(shù),例如[1.2]=1,[-0.5]=-1,[2]=2,則函數(shù)$y=[f(x)-\frac{1}{2}]+[f(1-x)-\frac{1}{2}]$的值域?yàn)閧-1,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}|{ln(-x)}|,x<0\\{x^2}-4x+3,x≥0\end{array}\right.$,若H(x)=[f(x)]2-2bf(x)+3有8個(gè)不同的零點(diǎn),則實(shí)數(shù)b的取值范圍為($\sqrt{3}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=sin2x的圖象向左平移φ(φ>0)個(gè)單位,得到g(x)的圖象,若g(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱,則φ的最小值為( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在長方體ABCD-A1B1C1D1中,如果對角線AC1與過點(diǎn)A的相鄰三個(gè)面所成的角分別是α,β,γ,那么cos2α+cos2β+cos2γ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB=4,AB∥CD,∠BCD=90°,M為棱PA的中點(diǎn).
(I)證明:平面BDM⊥平面PAD;
(Ⅱ)在棱PC上是否存在一點(diǎn)N,使得直線BN與平面BDM所成角為30°?若存在,求出CN長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.二項(xiàng)式${(9x-\frac{1}{{3\root{3}{x}}})^9}$的展開式中x的系數(shù)等于( 。
A.84B.24C.6D.-24

查看答案和解析>>

同步練習(xí)冊答案