如圖,三棱柱ABC-A1B1C1中,CC1=BC1=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC1B1,E、F分別為棱AB、CC1的中點.
(1)求證:EF∥平面A1BC1
(2)若AC≤CC1,且EF與平面ACC1A1所成的角的正弦值為
2
3
,求二面角C-AA1-B的余弦值.
考點:用空間向量求平面間的夾角,直線與平面平行的判定
專題:綜合題,空間位置關系與距離,空間角
分析:(1)利用線面平行的判定定理可證明EF∥面A1BC1;
(2)分別求出平面ACC1A1的一個法向量和平面AA1B的一個法向量,利用向量法能求出二面角C-AA1-B的余弦值.
解答: (1)證明:取A1B的中點D,連接ED,DC1
則ED∥AA1,ED=
1
2
AA1,
∵F為CC1上的動點,∴ED∥FC1,ED=FC1,
∴四邊形DEFC1是平行四邊形
∴EF∥DC1,
∴EF?平面A1BC1,DC1?平面A1BC1,
∴EF∥平面A1BC1;
(2)以O為坐標原點,以OC、OC1、OA為x,y,z軸,建立空間直角坐標系,
∴C(1,0,0),C1(0,1,0),A(0,0,b),A1(-1,1,b),
設平面ACC1A1的一個法向量為
n
=(x,y,z)
CC1
=(-1,1,0),
AC
=(1,0,-b),
-x+y=0
x-bz=0
,令z=1,則
n
=(b,b,1),
EF
=(1,
1
2
,-
b
2
),EF與平面ACC1A1所成的角的正弦值為
2
3
,
b
2b2+1
5
4
+
b2
4
=
2
3
,
解得b=1,或b=
10
2
,
∵AC≤CC1,∴b=1
n
=(1,1,1).
同理可求得平面AA1B的一個法向量
m
=(1,1,-1),
∴cos<
n
,
m
>=
1+1-1
3
3
=
1
3

又二面角C-AA1-B為銳二面角,故余弦值為
1
3
點評:本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認真審題,注意向量法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有5個男生和3個女生,從中選取5人擔任5門不同學科的科代表,求分別符合下列條件的選法數(shù):
(1)有女生但人數(shù)必須少于男生.
(2)某女生一定要擔任語文科代表.
(3)某男生必須包括在內(nèi),但不擔任數(shù)學科代表.
(4)某女生一定要擔任語文科代表,某男生必須擔任科代表,但不擔任數(shù)學科代表.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是各項不為0的等差數(shù)列,公差為d,Sn為其前n項和,且滿足an2=S2n-1,n∈N*,數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項和.
(1)求a1,d和an
(2)求
lim
n→∞
Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中內(nèi)角A、B、C的對邊分別為a、b、c,且2acosC=2b-c.
(Ⅰ)求角A的大;
(Ⅱ)如果a=1,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x3-ax+1.
(Ⅰ)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)在區(qū)間[-1,2]內(nèi)至少存在一個實數(shù)x,使得f(x)≤0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且滿足cos2A-cos2B=cos(
π
6
-A)cos(
π
6
+A).
(Ⅰ)求角B的值;
(Ⅱ)若b=1,且b<a,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程
3
sinx-cosx=0(x∈[0,2π])的所有解之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個不透明的口袋內(nèi)裝有材質(zhì)、重量、大小相同的7個小球,且每個小球的球面上要么只寫有數(shù)字“2012”,要么只寫有文字“奧運會”.假定每個小球每一次被取出的機會都相同,又知從中摸出2個球都寫著“奧運會”的概率是
1
7
.現(xiàn)甲、乙兩個小朋友做游戲,方法是:不放回從口袋中輪流摸取一個球,甲先取、乙后取,然后甲再取,直到兩個小朋友中有一人取得寫著文字“奧運會”的球時游戲終止.
(1)求該口袋內(nèi)裝有寫著數(shù)字“2012”的球的個數(shù);
(2)求當游戲終止時總球次數(shù)ξ的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,三棱錐A-BCD中,E,F(xiàn)分別是棱AD,BC的中點,在三棱錐的6條棱及EF所在的7條直線中,任取2條直線,則這兩條直線是異面直線的概率是
 

查看答案和解析>>

同步練習冊答案