6.已知集合A={x|3≤3x≤27},B={x|log2x<1}
(1)分別求A∩B,A∪B
(2)已知集合C={x|1<x<a},若C⊆A,求實(shí)數(shù)a的取值范圍.

分析 (1)利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性分別化簡A,B,再利用集合的運(yùn)算性質(zhì)即可得出.
(2)由C⊆A,對集合C分類討論:當(dāng)C為空集時,當(dāng)C為非空集合時,即可得出.

解答 解:(1)由3≤3x≤27,即3≤3x≤33,∴1≤x≤3,∴A=[1,3].
由log2x<1,可得0<x<2,∴B=(0,2).
∴A∩B=[1,2).
A∪B=(0,3].
(2)由C⊆A,
當(dāng)C為空集時,a≤1.
當(dāng)C為非空集合時,可得 1<a≤3.
綜上所述:a的取值范圍是a≤3.

點(diǎn)評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性、集合的運(yùn)算性質(zhì)、不等式的性質(zhì),考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在三棱錐S-ABC中,已知點(diǎn)D、E、F分別為棱AC、SA、SC的中點(diǎn).
(1)求證:EF∥平面ABC;
(2)若SA=SC,BD⊥平面SAC,求證:平面SBD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不等式x2-3x-18≤0的解集為[-3,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.方程$\frac{x|x|}{16}+\frac{y|y|}{9}$=-1表示的曲線即為函數(shù)y=f(x),有如下結(jié)論:( 。
①函數(shù)f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點(diǎn);
③函數(shù)y=f(x)的值域是R;
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點(diǎn)對稱,則函數(shù)y=g(x)的圖象就是方程$\frac{x|x|}{16}+\frac{y|y|}{9}$=-1確定的曲線.
其中所有正確的命題序號是(  )
A.①②B.②③C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\sqrt{2}sin({x-\frac{π}{4}}),x∈R$
(1)求函數(shù)f(x)的最小正周期和值域;
(2)設(shè)m為實(shí)常數(shù),若在開區(qū)間(0,π)內(nèi)f(x)=m有且只有1個實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)直線ax+by+c=0的傾斜角為α,且sinα+cosα=0,則a-b=( 。
A.1B.-1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列結(jié)論中正確的個數(shù)是( 。
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②若?p是q的必要條件,則p是?q的充分條件;
③命題“若am2<bm2,則a<b”的逆命題是真命題;
④?x∈R,不等式x2+2x>4x-3均成立.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列結(jié)論中,一定正確的有( 。﹤.
①$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$
②$({\overrightarrow a•\overrightarrow b})•\overrightarrow c=\overrightarrow a•({\overrightarrow b•\overrightarrow c})$
③$\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c,則\overrightarrow a=\overrightarrow b$
④若$\overrightarrow{e_1},\overrightarrow{e_2}$是平面內(nèi)的一組基底,對于平面內(nèi)任一向量$\overrightarrow a$,使$\overrightarrow a={λ_1}\overrightarrow{e_1}+{λ_2}\overrightarrow{e_2}$的實(shí)數(shù)λ1,λ2有無數(shù)對.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.試用函數(shù)單調(diào)性的定義討論下列函數(shù)的單調(diào)性.
(1)f(x)=-$\frac{5}{x}$,x∈(-∞,0);
(2)f(x)=2x2+1,x∈[0,+∞).

查看答案和解析>>

同步練習(xí)冊答案