18.如圖是一個幾何體的三視圖(側(cè)試圖中的弧線是半圓),則該幾何體的體積是(  )
A.8+2πB.8+πC.8+$\frac{2}{3}$πD.8+$\frac{4}{3}$π

分析 根據(jù)幾何體的三視圖,得出該幾何體上半部分是正方體,下半部分是圓柱的一半,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖得,
該幾何體的上半部分是棱長為2的正方體,
下半部分是半徑為1,高為2的圓柱的一半,
∴該幾何體的體積為
V=23+$\frac{1}{2}$×π×12×2=8+π.
故選:B.

點評 本題考查了利用三視圖求幾何體體積的應(yīng)用問題,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的結(jié)構(gòu)特征,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且$tanB=\frac{{\sqrt{3}ac}}{{{a^2}+{c^2}-{b^2}}}$.
(1)求∠B;
(2)求函數(shù)$f(x)=sinx+2sinBcosx,x∈[0,\frac{π}{2}]$的值域及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定義域為R的函數(shù)$f(x)=\frac{{-{2^x}-b}}{{{2^{x+1}}+2}}$是奇函數(shù).
(Ⅰ)求實數(shù)b的值;
(Ⅱ)判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅲ)若關(guān)于x的方程f(x)=m在x∈[0,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n-1}{2n+3}$,則$\frac{{a}_{9}}{_{10}}$=$\frac{50}{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,則lg$\frac{{x}^{2}}{y}$的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,三邊長a,b,c,滿足a+c=3b,則$tan\frac{A}{2}tan\frac{C}{2}$的值為(  )
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若{1,2}⊆A?{1,2,3,4,5},則滿足條件的集合A的個數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知Sn是數(shù)列{an}的前n項和,且an=nsin$\frac{nπ}{3}$(n∈N*),則S50等于(  )
A.-24$\sqrt{3}$B.24$\sqrt{3}$C.-$\frac{75\sqrt{3}}{2}$D.$\frac{51}{2}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.方程x2+y2cosα=1,α∈(0,π)表示的曲線不可能是( 。
A.B.橢圓C.雙曲線D.直線

查看答案和解析>>

同步練習(xí)冊答案