20.在銳角△ABC中,$\frac{{a}^{2}+^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$.
(1)求角A;
(2)若a=2,且sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值時,求△ABC的面積.

分析 (1)利用余弦定理、誘導(dǎo)公式化簡所給的式子,求得sinA 的值,可得A的值.
(2)由(1)可得B+C=$\frac{2π}{3}$,故有C+2B-$\frac{5π}{6}$=B-$\frac{π}{6}$,再利用兩角和差的三角公式、正弦函數(shù)的值域求得sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值$\sqrt{3}$,此時,△ABC為等邊三角形,從而求得它的面積.

解答 解:(1)銳角△ABC中,∵$\frac{{a}^{2}+^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$,∴$\frac{2cosC}{\sqrt{3}}$=$\frac{cosC}{sinA}$,∴sinA=$\frac{\sqrt{3}}{2}$,A=$\frac{π}{3}$.
(2)由(1)可得B+C=$\frac{2π}{3}$,∴C+2B-$\frac{5π}{6}$=B-$\frac{π}{6}$,
∴sinB+cos(C+2B-$\frac{5π}{6}$)=sinB+cos(B-$\frac{π}{6}$)=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
故當(dāng)B+$\frac{π}{6}$=$\frac{π}{2}$時,即B=$\frac{π}{3}$時,sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值$\sqrt{3}$,此時,A=B=C=$\frac{π}{3}$,△ABC為等邊三角形,
∴△ABC的面積為 $\frac{1}{2}$•bc•sinA=$\frac{1}{2}$•2•2•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

點評 本題主要考查正弦定理、余弦定理的應(yīng)用、兩角和差的三角公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為$\stackrel{∧}{y}$=0.85x-85.71,則下列結(jié)論中不正確的是( 。
A.若該大學(xué)某女生身高為170cm,則她的體重必為58.79kg
B.y與x具有正的線性相關(guān)關(guān)系
C.回歸直線過樣本點的中心($\overline x$,$\overline y$)
D.身高x為解釋變量,體重y為預(yù)報變量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若樣本點為(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),則樣本點的中心為(25,2.9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)Sn為等差數(shù)列{an}的前n項和,若a5>0,a1+a10<0,則當(dāng)Sn最大時正整數(shù)n為(  )
A.4B.5C.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.《中國謎語大會》是中央電視臺科教頻道的一檔集文化、益智、娛樂為一體的大型電視競猜節(jié)目,目的是為弘揚中國傳統(tǒng)文化、豐富群眾文化生活.為選拔選手參加“中國謎語大會”,某地區(qū)舉行了一次“謎語大賽”活動.為了了解本次競賽選手的成績情況,從中抽取了部分選手的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100)的數(shù)據(jù)).

(I)求樣本容量n和頻率分布直方圖中的x,y的值;
(II)分數(shù)在[80,90)的學(xué)生中,男生有2人,現(xiàn)從該組抽取三人“座談”,求至少有兩名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)是R上的奇函數(shù),當(dāng)x≥0時,f(x)=x${\;}^{\frac{1}{3}}}$+5x+m,則f(-8)=-42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用數(shù)學(xué)歸納法證明等式1+2+3+…+2n=$\frac{{{2^n}({{2^n}+1})}}{2}$(n≥2,n∈N*)的過程中,第一步歸納基礎(chǔ),等式左邊的式子是( 。
A.1+2B.1+2+3+4C.1+2+3D.1+2+3+4+5+6+7+8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列命題:
①復(fù)數(shù)z=$\frac{3-ai}{i}$在復(fù)平面內(nèi)對應(yīng)的點在第三象限是a≥0的充分不必要條件;
②設(shè)α,β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的充要條件;
③$a={log_{\frac{1}{3}}}2$,b=log${\;}_{\frac{1}{2}}$3,$c={(\frac{1}{3})^{0.5}}$大小關(guān)系是a<b<c;
④已知定點A(1,1),拋物線y2=4x的焦點為F,點P為拋物線上任意一點,則|PA|+|PF|的最小值為2;以上命題正確的是①④(請把正確命題的序號都寫上)

查看答案和解析>>

同步練習(xí)冊答案