4.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈r)滿足f(1)=1,f(-1)=0,且對任意實(shí)數(shù)x都有f(x)≥x.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(x)-mx(m∈R),求m的取值范圍,使g(x)在區(qū)間[-1,1]上是單調(diào)函數(shù).

分析 (1)根據(jù)二次函數(shù)f(x)滿足f(1)=1,f(-1)=0,列出方程組,求出b的值以及a、c的關(guān)系;
再根據(jù)f(x)≥x恒成立,列出不等式組,求出a、c的值;
(2)求出g(x)的解析式,利用二次函數(shù)的圖象與性質(zhì),求出對稱軸x=2m-1滿足的條件,求出m的取值范圍.

解答 解:(1)∵二次函數(shù)f(x)滿足f(1)=1,f(-1)=0,
∴$\left\{\begin{array}{l}{a+b+c=1}\\{a-b+c=0}\end{array}\right.$,
解得b=$\frac{1}{2}$,
a+c=$\frac{1}{2}$,
∴c=$\frac{1}{2}$-a;
又對任意實(shí)數(shù)x都有f(x)≥x,
∴ax2+$\frac{1}{2}$x+($\frac{1}{2}$-a)≥x,
即ax2-$\frac{1}{2}$x+($\frac{1}{2}$-a)≥0,
∴$\left\{\begin{array}{l}{a>0}\\{\frac{1}{4}-4a(\frac{1}{2}-a)≤0}\end{array}\right.$,
解得a=$\frac{1}{4}$,∴c=$\frac{1}{4}$;
∴f(x)=$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{1}{4}$;
(2)∵g(x)=f(x)-mx=$\frac{1}{4}$x2+($\frac{1}{2}$-m)x+$\frac{1}{4}$,其中m∈R,
且二次函數(shù)g(x)的圖象是拋物線,對稱軸是x=2m-1,
∴當(dāng)2m-1≤-1或2m-1≥1,
即m≤0或m≥1時(shí),
g(x)在區(qū)間[-1,1]上是單調(diào)函數(shù);
∴m的取值范圍是(-∞,0]∪[1,+∞).

點(diǎn)評 本題考查了求函數(shù)的解析式以及二次函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a>0,b>0,c>0,$\frac{1}{{a}^{3}}$+$\frac{1}{^{3}}$+$\frac{1}{{c}^{3}}$+3abc的最小值為m.
(Ⅰ)求m的值;
(Ⅱ)解關(guān)于x的不等式|x+1|-2x<m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a2=2,an+1-2an=0,那么數(shù)列{an}的前6項(xiàng)和是63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}:a1=4,an=3an-1+2n-1,(n≥2),求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知關(guān)于x的不等式ax2-(a+1)x+1<0.
(1)若a=-3,求不等式的解集;
(2)若a∈R,求不等式的解集;
(3)若不等式對x∈(2,3)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在數(shù)列{an}中,$\frac{1}{(2-1){a}_{1}}$+$\frac{1}{({2}^{2}-1){a}_{2}}$…+$\frac{1}{({2}^{n}-1){a}_{n}}$=2n-1+$\frac{1}{{2}^{n}}$,則數(shù)列{an}的前n項(xiàng)和Sn=1-$\frac{1}{{2}^{n+1}-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若某多面體的三視圖如圖所示,則此多面體的體積為$\frac{5}{6}$,外接球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知甲、乙二人決定各購置一輛純電動汽車,甲從A、B、C三類車型中挑選,乙只從B、C兩類車型中挑選,甲、乙二人選擇各類車型的概率如下表:
車型
概率
AABBCC
$\frac{1}{6}$p1p2
/$\frac{1}{3}$$\frac{2}{3}$
若甲、乙兩人都選C類車型的概率為$\frac{1}{3}$.
(1)求p1、p2的值;
(2)該市對購買純電動汽車進(jìn)行補(bǔ)貼,補(bǔ)貼標(biāo)準(zhǔn)如下表:
車型ABC
補(bǔ)貼金額(萬元)123
記甲、乙兩人購買所獲得的財(cái)政補(bǔ)貼(單位:萬元)的和為X,求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,a1=3,若函數(shù)y=3x-2的圖象經(jīng)過點(diǎn)(an+1,an
(1)求證:數(shù)列{an-1}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案