11.已知函數(shù)f(2x)的定義域是[$\frac{1}{2}$,1],則函數(shù)f(x)的定義域?yàn)閇$\sqrt{2}$,2].

分析 由函數(shù)f(2x)的定義域[$\frac{1}{2}$,1],解得$\sqrt{2}$≤2x≤2,即可得到結(jié)果.

解答 解:∵函數(shù)f(2x)的定義域[$\frac{1}{2}$,1],
∴$\sqrt{2}$≤2x≤2,
∴f(x)的定義域是[$\sqrt{2}$,2].
故答案為:[$\sqrt{2}$,2].

點(diǎn)評(píng) 本題主要考查抽象函數(shù)的定義域,要注意理解應(yīng)用定義域的定義,特別是代換之后的范圍不變.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若集合A=(-2,4),B=(-∞,m)∪[m+8,+∞).
(1)若m=3,全集U=A∪B,試求A∩(∁UB);
(2)若A∩B=∅,求負(fù)實(shí)數(shù)m的取值范圍;
(3)若A∩B=A,求正實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.A={x|x2+mx-2=0,x∈R},B={x|x2-x-n=0,x∈R},若A∪B={-2,0,1},則m、n的值m=1,n=0(隱含條件,韋達(dá)定理排除)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“$\left\{\begin{array}{l}{{x}_{1}>3}\\{{x}_{2}>3}\end{array}\right.$”是“$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}>6}\\{{x}_{1}{x}_{2}>9}\end{array}\right.$”成立的( 。
A.充分非必要條件B.必要非充分條件
C.非充分非必要條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.定義集合P={x|x=a•b,a∈M,b∈N},集合M={1,2},集合N={3,4,5},求集合P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知全集U={1,2,3,4,5},集合A={x|x2-5x+6=0},集合B={x|x2-5x+4=0},求∁UA,∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,那么f(2)+f(3)+f($\frac{1}{2}$)+f($\frac{1}{3}$)=2,f(x)的值域?yàn)閇0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.若直線y=$\frac{1}{2}$x+b與曲線f(x)=alnx相切.
(1)若切點(diǎn)橫坐標(biāo)為2,求a,b;
(2)當(dāng)a>0時(shí),求實(shí)數(shù)b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.銳角α,β滿足cosα=$\frac{12}{13}$,cos(2α+β)=$\frac{3}{5}$,那么sin(α+β)=(  )
A.$\frac{63}{65}$B.$\frac{53}{65}$C.$\frac{33}{65}$D.$\frac{33}{65}$

查看答案和解析>>

同步練習(xí)冊(cè)答案