19.“$\left\{\begin{array}{l}{{x}_{1}>3}\\{{x}_{2}>3}\end{array}\right.$”是“$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}>6}\\{{x}_{1}{x}_{2}>9}\end{array}\right.$”成立的(  )
A.充分非必要條件B.必要非充分條件
C.非充分非必要條件D.充要條件

分析 由“$\left\{\begin{array}{l}{{x}_{1}>3}\\{{x}_{2}>3}\end{array}\right.$”推出“$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}>6}\\{{x}_{1}{x}_{2}>9}\end{array}\right.$”成立,反之不成立,即可判斷出結(jié)論.

解答 解:由“$\left\{\begin{array}{l}{{x}_{1}>3}\\{{x}_{2}>3}\end{array}\right.$”可以推出“$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}>6}\\{{x}_{1}{x}_{2}>9}\end{array}\right.$”成立,反之不成立,例如取x1=7,x2=2.
∴“$\left\{\begin{array}{l}{{x}_{1}>3}\\{{x}_{2}>3}\end{array}\right.$”推出“$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}>6}\\{{x}_{1}{x}_{2}>9}\end{array}\right.$”成立的乘法不必要條件.
故選:A.

點評 本題考查了不等式的性質(zhì)、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正數(shù)x,y滿足x+2y=1,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|sinθ|=-sinθ,|cosθ|=cosθ,sinθcosθ≠0,則點P(tanθ,sinθ)在第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$的圖象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.焦點在x軸上的橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),短軸的一個端點和兩個焦點相連構(gòu)成一個三角形,該三角形內(nèi)切圓的半徑為$\frac{3}$,則橢圓的離心率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x-1)的定義域為(-1,4),則函數(shù)f(|2x+1|)的定義域為( 。
A.(-1,2)B.(-2,1)C.(-3,3)D.(-$\frac{5}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(2x)的定義域是[$\frac{1}{2}$,1],則函數(shù)f(x)的定義域為[$\sqrt{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)求過橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1內(nèi)一點P(1,1)且被該點平分的弦所在的直線方程;
(2)求橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{7}$=1上的點到直線1:3x-2y-16=0的最短距離,并求取得最短距離時橢圓上的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M⊆{2,3,4},且M中至多有一個偶數(shù),則這樣的集合有(  )
A.3個B.4個C.5個D.6個

查看答案和解析>>

同步練習(xí)冊答案