A. | a1 | B. | a5 | C. | a6 | D. | a7 |
分析 an=$\frac{4n-π}{2n-11}$=2+$\frac{22-π}{2n-11}$,對n分類討論:當(dāng)n≤5時,當(dāng)n≥6時,利用單調(diào)性即可得出.
解答 解:an=$\frac{4n-π}{2n-11}$=$\frac{2(2n-11)+22-π}{2n-11}$=2+$\frac{22-π}{2n-11}$,
當(dāng)n≤5時,數(shù)列{an}單調(diào)遞減,an<2;當(dāng)n≥6時,數(shù)列{an}單調(diào)遞減,an>2.
∴當(dāng)n=6時,數(shù)列{an}取得最大值.
故選:C.
點評 本題考查了數(shù)列的單調(diào)性,考查了變形能力、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4} | B. | {1,2,3,4,5} | C. | {2,3} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=x+\frac{1}{x}$,x≠0且x∈R | B. | $y=\frac{sinx}{2}+\frac{2}{sinx}$,x∈(0,π) | ||
C. | $y=\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$,x∈R | D. | y=ex+e-x,x∈R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f1(x)和 f2(x)都是P-函數(shù) | B. | f1(x)是P-函數(shù),f2(x)不是P-函數(shù) | ||
C. | f1(x)不是P-函數(shù),f2(x)是P-函數(shù) | D. | f1(x)和 f2(x)都不是P-函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com