分析 由當(dāng)x<0時(shí),f(x)=-x2,x≥0時(shí),f(x)=x2,從而f(x)在R上是單調(diào)遞增函數(shù),且滿足2f(x)=f($\sqrt{2}$x),再根據(jù)不等式f(x+t)≥2f(x)=f($\sqrt{2}$x)在[t,t+2]恒成立,可得x+t≥$\sqrt{2}$x在[t,t+2]恒成立,計(jì)算即可得出答案.
解答 解:當(dāng)x<0時(shí),f(x)=-x2遞增
,當(dāng)x≥0時(shí),f(x)=x2遞增,
函數(shù)f(x)=$\left\{{\begin{array}{l}{x^2}\\{-{x^2}}\end{array}}\right.\begin{array}{l}{(x≥0)}\\{(x<0)}\end{array}$,在R上是單調(diào)遞增函數(shù),
且滿足2f(x)=f($\sqrt{2}$x),
∵不等式f(x+t)≥2f(x)=f($\sqrt{2}$x)在[t,t+2]恒成立,
∴x+t≥$\sqrt{2}$x在[t,t+2]恒成立,
即:t≥($\sqrt{2}$-1)x在 x∈[t,t+2]恒成立,
∴t≥($\sqrt{2}$-1)(t+2),
解得:t≥$\sqrt{2}$,
故答案為:$[\sqrt{2},+∞)$.
點(diǎn)評(píng) 本題考查了函數(shù)恒成立問(wèn)題及函數(shù)的單調(diào)性,難度適中,關(guān)鍵是掌握函數(shù)的單調(diào)性的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | R | B. | [-4,0] | C. | [9,33] | D. | [-33,-9] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
非讀書迷 | 讀書迷 | 總計(jì) | |
男 | 15 | ||
女 | 45 | ||
總計(jì) |
P(K2≥k1) | 0.100 | 0.050 | 0.010 | 0.001 |
k1 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x-y-4=0 | B. | 4x+y-4=0 | C. | 4x-y-4=0 | D. | 3x+y-4=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com