分析 (1)先任取x1<x2,x2-x1>0.由當(dāng)x>0時,f(x)>1.得到f(x2-x1)>1,再對f(x2)按照f(a+b)=f(a)+f(b)-1變形得到結(jié)論.
(2)由f(2)=3,再將f(3m2-m-2)<3轉(zhuǎn)化為f(3m2-m-2)<f(2),由(1)中的結(jié)論,利用單調(diào)性求解.
解答 解:(1)證明:任取x1<x2,
∴x2-x1>0.
∴f(x2-x1)>1.
∴f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1)-1>f(x1),
∴f(x)是R上的增函數(shù).
(2)∵f(2)=3.
∴f(3m2-m-2)<3=f(2).
又由(1)的結(jié)論知,f(x)是R上的增函數(shù),
∴3m2-m-2<2,
3m2-m-4<0,
∴-1<m<$\frac{4}{3}$即不等式的解集為$\left\{{m|-1<m<\frac{4}{3}}\right\}$.
點評 本題主要考查抽象函數(shù)的單調(diào)性證明和利用單調(diào)性定義解抽象不等式,利用定義法以及轉(zhuǎn)化法是解決本題的關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m<3 | B. | -2<m<2 | C. | m<2 | D. | m>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
ξ | -1 | 0 | 1 |
P | a | b | c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18篇 | B. | 24篇 | C. | 25篇 | D. | 27篇 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com