分析 直線l:mx-y-1=0經(jīng)過定點(diǎn)P(0,-1).利用斜率計(jì)算公式可得:kPA,kPB.由于直線l:mx-y-1=0與線段AB相交,可得kPA≥m≥kPB.即可得出.
解答 解:直線l:mx-y-1=0經(jīng)過定點(diǎn)P(0,-1).
kPA=$\frac{-1-1}{0-1}$=2,kPB=$\frac{-1-2}{0-3}$=1.
∵直線l:mx-y-1=0與線段AB相交,
∴kPA≥m≥kPB.
∴2≥m≥1.
∴實(shí)數(shù)m的取值范圍為[1,2].
故答案為:[1,2].
點(diǎn)評(píng) 本題考查了直線過定點(diǎn)問題、斜率計(jì)算公式及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{2e}$,$\frac{1}{e}$) | C. | [$\frac{ln3}{3}$,$\frac{1}{e}$) | D. | ($\frac{ln3}{3}$,$\frac{1}{e}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 2 | 3 | 4 | 5 | 6 |
y | 3 | 4 | 6 | 8 | 9 |
A. | $\widehat{y}=2x+2$ | B. | $\widehat{y}=\frac{8}{5}x-\frac{2}{5}$ | C. | $\widehat{y}=-\frac{3}{2}x+12$ | D. | $\widehat{y}=2x-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 2 | C. | 3 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com