5.已知F1,F(xiàn)2為雙曲線x2-y2=1的兩個(gè)焦點(diǎn),P為雙曲線上一點(diǎn),且∠F1PF2=60°,則△F1PF2的面積為$\sqrt{3}$.

分析 由題意可得 F2($\sqrt{2}$,0),F(xiàn)1 (-$\sqrt{2}$,0),由余弦定理可得 PF1•PF2=4,由${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$PF1•PF2sin60°,計(jì)算即可得到所求.

解答 解:由雙曲線x2-y2=1的a=b=1,c=$\sqrt{2}$,
F2($\sqrt{2}$,0),F(xiàn)1 (-$\sqrt{2}$,0),
由余弦定理可得,
F1F22=8=PF12+PF22-2PF1•PF2cos60°
=(PF1-PF22+PF1•PF2=4+PF1•PF2,
∴PF1•PF2=4.
則${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$PF1•PF2sin60°=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查雙曲線的定義和標(biāo)準(zhǔn)方程,余弦定理,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,求出PF1•PF2的值,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a{x}^{2}+1,x≥0}\\{(a-1){e}^{ax},x<0}\end{array}\right.$在(-∞,+∞)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知xi∈[0,π],i=1,2,3,…,n,則有
①sinx1=sinx1
②sinx1+sinx2≤2sin$\frac{{{x_1}+{x_2}}}{2}$
③sinx1+sinx2+sinx3≤3sin$\frac{{{x_1}+{x_2}+{x_3}}}{3}$
④sinx1+sinx2+sinx3+sinx4≤4sin$\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4}$
由上述結(jié)論類比,猜想得到一般的結(jié)論是:$sin{x_1}+sin{x_2}+…+sin{x_n}≤nsin\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖為正方體ABCD-A1B1C1D1的平面展開圖,其中E、M、N分別為A1D1、BC、CC1的中點(diǎn),
(Ⅰ) 作出該正方體的水平放置直觀圖;
(Ⅱ) 求證:平面BEC1∥平面D1MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.從6名同學(xué)中選出2名參加某一項(xiàng)活動(dòng),有(  )種不同的選法.
A.30B.36C.15D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線C:x2-$\frac{{y}^{2}}{6}$=1的左焦點(diǎn)為F,雙曲線與直線l:y=kx交于A、B兩點(diǎn),且∠AFB=$\frac{π}{3}$,則$\overrightarrow{FA}$•$\overrightarrow{FB}$=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.由$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,$\sqrt{5+\frac{5}{24}}=5\sqrt{\frac{5}{24}}$,…,$\sqrt{10+\frac{a}}=10\sqrt{\frac{a}}$,推測(cè)a+b=109.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知兩點(diǎn)M(2,0)、N(-2,0),平面上動(dòng)點(diǎn)P滿足|$\overrightarrow{MN}$|•|$\overrightarrow{MP}$|+$\overrightarrow{MN}$•$\overrightarrow{NP}$=0
(1)求動(dòng)點(diǎn)P的軌跡C的方程.
(2)如果直線x+my+4=0(m∈R)與曲線C交于A、B兩點(diǎn),那么在曲線C上是否存在點(diǎn)D,使得△ABD是以AB為斜邊的直角三角形?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖的程序框圖,輸出的結(jié)果為( 。
A.$\frac{8}{9}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{9}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案