17.由$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,$\sqrt{5+\frac{5}{24}}=5\sqrt{\frac{5}{24}}$,…,$\sqrt{10+\frac{a}}=10\sqrt{\frac{a}}$,推測a+b=109.

分析 本題考查的知識點是歸納推理,方法是根據(jù)已知中的等式,分析根號中分式分子和分母的變化規(guī)律,得到a,b值.

解答 解:由已知中,
$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,
$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,
$\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,
$\sqrt{5+\frac{5}{24}}=5\sqrt{\frac{5}{24}}$,
…,
歸納可得:第n個等式為:$\sqrt{(n+1)+\frac{n+1}{(n+1)^{2}-1}}=(n+1)\sqrt{\frac{n+1}{(n+1)^{2}-1}}$,
當n+1=10時,a=10,b=99,
故a+b=109,
故答案為:109

點評 歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果執(zhí)行下面的框圖,若輸入的m,n的值分別為392,252,則輸出的結(jié)果m=( 。
A.7B.14C.21D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.程序框圖中表示計算、賦值功能的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知F1,F(xiàn)2為雙曲線x2-y2=1的兩個焦點,P為雙曲線上一點,且∠F1PF2=60°,則△F1PF2的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若執(zhí)行如圖的程序框圖,則輸出的s值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在山頂C測得山下塔頂A和塔底B的俯角分別為30°和60°,已知塔高AB為20m,則山高CD為( 。
A.30mB.20$\sqrt{3}$mC.$\frac{40\sqrt{3}}{3}$mD.40m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.分式$\frac{6{x}^{2}+12x+10}{{x}^{2}+2x+2}$可取的最小值為( 。
A.4B.5C.6D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,若2b=a+c,且B=$\frac{π}{4}$,則cosA-cosC的值為(  )
A.$\sqrt{2}$B.$±\sqrt{2}$C.$\root{4}{2}$D.±$\root{4}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x,y是三角形的兩邊,α,β是三角形的兩內(nèi)角,且x,y,α,β之間滿足下列關(guān)系$\left\{\begin{array}{l}{xsinα+ycosβ=0}\\{xcosα-ysinβ=0}\end{array}\right.$,則α的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

同步練習冊答案