8.已知直線l:2x-y-1=0,動點(diǎn)P(x,y)在直線l上.
(1)若A(0,4),B(-2,0),求|PA|+|PB|的最小值并求此時點(diǎn)P的坐標(biāo);
(2)若A(0,4),C(4,1),求|PC|-|PA|的最大值并求此時點(diǎn)P的坐際.

分析 (1)如圖所示,設(shè)點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′(x,y),則$\left\{\begin{array}{l}{2×\frac{x+0}{2}-\frac{4+y}{2}-1=0}\\{\frac{y-4}{x-0}×2=-1}\end{array}\right.$,解得A′.連接A′B交直線l于點(diǎn)P,則點(diǎn)P即為所求.
(2)如圖所示,由(1)可知:點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′(4,2),連接CA′并延長交直線l于點(diǎn)P,則點(diǎn)P滿足使得|PC|-|PA|取得最大值|A′C|.

解答 解:(1)如圖所示,
設(shè)點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′(x,y),
則$\left\{\begin{array}{l}{2×\frac{x+0}{2}-\frac{4+y}{2}-1=0}\\{\frac{y-4}{x-0}×2=-1}\end{array}\right.$,解得A′(4,2).
連接A′B交直線l于點(diǎn)P,則點(diǎn)P即為所求.
否則在直線l上除了點(diǎn)P以外的任取點(diǎn)P′,則BP′+AP′>A′B=BP+AP.
∴|PA|+|PB|的最小值=|BA′|=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$.
直線BA′:$y=\frac{0-2}{-2-4}(x+2)$,化為x-3y+2=0.
聯(lián)立$\left\{\begin{array}{l}{x-3y+2=0}\\{2x-y-1=0}\end{array}\right.$,解得P(1,1).
(2)如圖所示,
由(1)可知:點(diǎn)A關(guān)于直線l的對稱點(diǎn)A′(4,2),
連接CA′并延長交直線l于點(diǎn)P(4,7),
則點(diǎn)P滿足使得|PC|-|PA|取得最大值|A′C|=1.
否則在直線l上除了點(diǎn)P以外的任取點(diǎn)P′,則|P′C|-|P′A|<|A′C|.
∴P(4,7)滿足使得|PC|-|PA|取得最大值|A′C|=1.

點(diǎn)評 本題考查了軸對稱問題、線段的垂直平分線性質(zhì)、三角形三邊大小關(guān)系,考查了數(shù)形結(jié)合能力、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)滿足f(log2x)=$\sqrt{{x}^{2}-2x+1}$,若a<b<c,且f(a)>f(c)>f(b),則( 。
A.a<0,b<0,c<0B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)的定義域?yàn)镽,且對任意實(shí)數(shù)都有a,b∈R,都有f(a+b)=f(a)+f(b),且當(dāng)x>0時,f(x)<0恒成立.
(1)求f(0);
(2)證明:函數(shù)y=f(x)是奇函數(shù);
(3)證明:函數(shù)y=f(x)是R上的減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解不等式$\frac{4}{(2sinx+1)^{3}}+\frac{5}{2sinx+1}-4si{n}^{3}$x-5sinx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率e=$\frac{\sqrt{2}}{2}$,過C(-1,0)點(diǎn)且斜率為1的直線1與橢圓交于P、Q兩點(diǎn),滿足$\overrightarrow{PC}$=3$\overrightarrow{CQ}$,
(I)求該橢圓方程;
(Ⅱ)若直線m過點(diǎn)(1,0)且與橢圓交于A、B兩點(diǎn).求△ABC內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)系中,AB=AC,A(0,3),B(-4,0),C(a,-1)(a>0),則向量$\overrightarrow{BC}$在向量$\overrightarrow{AB}$上的投影為( 。
A.-5B.-3C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,已知sin(A+$\frac{π}{6}$)=$\frac{a+b}{2c}$.
(1)求角C;
(2)若c=2,求AB邊上的中線長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對任意的n∈N+,點(diǎn)(n,Sn),均在函數(shù)y=2x+r(r為常數(shù))的圖象上.
(1)求r的值;
(2)記bn=$\frac{n+1}{4{a}_{n}}$(n∈N+)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.小張周末自己駕車旅游,早上8點(diǎn)從家出發(fā),駕車3h后到達(dá)景區(qū)停車場,期間由于交通等原因,小張的車所走的路程s(單位:km)與離家的時間t(單位:h)的函數(shù)關(guān)系式為s(t)=-4t(t-13).由于景區(qū)內(nèi)不能駕車,小張把車停在景區(qū)停車場.在景區(qū)玩到17點(diǎn),小張開車從停車場以60km/h的速度沿原路返回.
(Ⅰ)求這天小張的車所走的路程s(單位:km)與離家時間t(單位:h)的函數(shù)解析式;
(Ⅱ)在距離小張家48km處有一加油站,求這天小張的車途經(jīng)該加油站的時間.

查看答案和解析>>

同步練習(xí)冊答案