【題目】已知| |=1,| |= ,
(1)若 、 的夾角為60°,求| + |;
(2)若 ﹣ 與 垂直,求 與 的夾角.
(3)若 ∥ ,求 .
【答案】
(1)解:| |=1,| |= , 、 的夾角為60°,
∴| + |2=| |2+| |2+2| || |cos60°=1+2+2×1× × =3+ ,
∴| + |=
(2)解:設(shè) 與 的夾角為θ
∵ ﹣ 與 垂直,
∴( ﹣ ) =| |2﹣ =1﹣| || |cosθ=1﹣ cosθ=0,
解得cosθ= ,
∴θ=45°
(3)解:∵ ∥ ,
∴ 與 的夾角為0°或180°,
∴ =| || |cos0°= , =| || |cos180°=﹣
【解析】(1)根據(jù)向量的數(shù)量積和模計(jì)算即可;(2)根據(jù)向量垂直的條件和向量的數(shù)量積公式計(jì)算即可;(3)根據(jù)向量平行的條件和向量的數(shù)量積公式計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn= n2+ n(n∈N*),數(shù)列{bn}是首項(xiàng)為4的正項(xiàng)等比數(shù)列,且2b2 , b3﹣3,b2+2成等差數(shù)列. (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=anbn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 、 滿(mǎn)足| |=1,| |=2, 與 的夾角為60°.
(1)若(k ﹣ )⊥( + ),求k的值;
(2)若|k ﹣ |<2,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖. (Ⅰ)求直方圖中a的值;
(Ⅱ)若該市有110萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說(shuō)明理由;
(Ⅲ)若該市政府希望使80%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,圖象過(guò)定點(diǎn)(0,1)的是( )
A.y=2x
B.y=log2x
C.
D.y=x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(sinx,﹣2cosx), =(sinx+ cosx,﹣cosx),x∈R.函數(shù)f(x)= .
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 滿(mǎn)足an=2 ﹣1.若對(duì)任意的正整數(shù)p、q(p≠q),不等式SP+Sq>kSp+q恒成立,則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當(dāng)a=1時(shí),解不等式f(x)>1;
(2)若關(guān)于x的方程f(x)+log2(x2)=0的解集中恰有一個(gè)元素,求a的值;
(3)設(shè)a>0,若對(duì)任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過(guò)1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(﹣5,a)作圓x2+y2﹣2ax+2y﹣1=0的兩條切線,切點(diǎn)分別為M(x1 , y1),N(x2 , y2),且 + =0,則實(shí)數(shù)a的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com