6.函數(shù)y=-cos2x+$\sqrt{3}$cosx+$\frac{5}{4}$,則( 。
A.最大值是$\frac{5}{4}$,最小值是1B.最大值是1,最小值是$\frac{1}{4}$-$\sqrt{3}$
C.最大值是2,最小值是$\frac{1}{4}$-$\sqrt{3}$D.最大值是2,最小值是$\frac{5}{4}$

分析 利用配方法,結(jié)合三角函數(shù)的范圍,即可得出結(jié)論.

解答 解:y=-cos2x+$\sqrt{3}$cosx+$\frac{5}{4}$=-(cosx-$\frac{\sqrt{3}}{2}$)2+2,
∴cosx=$\frac{\sqrt{3}}{2}$,最大值是2,cosx=-1,最小值是$\frac{1}{4}$-$\sqrt{3}$.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的最大值與最小值,考查配方法的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.p:|x-m|<1,q:x2-8x+12<0,且q是p的必要不充分條件,則m的取值范圍是( 。
A.3<m<5B.3≤m≤5C.m>5或m<3D.m≥5或m≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)若$cosθ=\frac{{\sqrt{2}}}{3}$,求$\frac{{sin(θ-5π)cos(θ-\frac{π}{2})cos(8π-θ)}}{{sin(θ-\frac{3π}{2})sin(-θ-4π)}}$的值.
(2)求函數(shù)$f(x)=lg(2cosx-1)+\sqrt{49-{x^2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-6≤α≤6},則A∩B等于( 。
A.B.{α|-6≤α≤π}
C.{α|0≤α≤π}D.{α|-6≤α≤-π,或0≤α≤π}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,正方形ABCD與正方形ABEF邊長(zhǎng)均為1,且平面ABCD⊥平面ABEF,點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng),若CM=BN=α(0<α<$\sqrt{2}$)
(1)求MN的長(zhǎng)度;
(2)當(dāng)α為何值時(shí),MN的長(zhǎng)最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+4}$.
(1)求證{$\frac{1}{{a}_{n}}$+$\frac{1}{3}$}為等比數(shù)列;
(2)求證:Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a1,$\frac{{a}_{2}}{{a}_{1}}$,$\frac{{a}_{3}}{{a}_{2}}$,…$\frac{{a}_{n}}{{a}_{n-1}}$是首項(xiàng)為1,公約比為2的等比數(shù)列,則數(shù)列{an}的第100頂?shù)扔?4950

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知集合A={1,2,3},f、g為集合A到A的函數(shù),則函數(shù)f、g的像集交為空的函數(shù)對(duì)(f,g)的個(gè)數(shù)為42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)二次函數(shù)f(x)=-$\frac{1}{2}$x2+m圖象的頂點(diǎn)為C,與x軸的交點(diǎn)分別為A、B.若△ABC的面積為8$\sqrt{2}$.
(1)求m的值;
(2)求函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案