分析 (1))△ABC中,由acosB=($\sqrt{2}$c-b)cosA,利用正弦定理求得cosA=$\frac{\sqrt{2}}{2}$,可得A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
解答 解:(1)△ABC中,由acosB=($\sqrt{2}$c-b)cosA,利用正弦定理可得sinAcosB=$\sqrt{2}$sinCcosA-sinBcosA,
化簡(jiǎn)可得 sin(A+B)=$\sqrt{2}$sinCcosA,即 sinC=$\sqrt{2}$sinCcosA,求得cosA=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{4}$.
(2)由cosB=$\frac{2\sqrt{5}}{5}$,可得sinB=$\frac{\sqrt{5}}{5}$,再由正弦定理可得$\frac{a}{sinA}=\frac{sinB}$,即$\frac{\sqrt{10}}{\frac{\sqrt{2}}{2}}=\frac{\frac{\sqrt{5}}{5}}$,求得b=AC=2.
△ABC中,由余弦定理可得BC2=AB2+AC2-2AB•AC•cos∠A,即10=AB2+4-2AB•2•$\frac{\sqrt{2}}{2}$,求得AB=3$\sqrt{2}$.
△ABD中,由余弦定理可得 BD2=AB2+AD2-2AB•AD•cos∠A=18+1-6$\sqrt{2}$•$\frac{\sqrt{2}}{2}$=13,
∴BD=$\sqrt{13}$.
點(diǎn)評(píng) 本題主要考查正弦定理和余弦定理的應(yīng)用,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等邊三角形 | B. | 不含60°的等腰三角形 | ||
C. | 鈍角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | b<c<a | B. | c<a<b | C. | a<b<c | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com