15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且(b-$\sqrt{2}c$)cosA+acosB=0.
(1)求角A,
(2)若a=$\sqrt{10}$,cosB=$\frac{2\sqrt{5}}{5}$,D為AC的中點(diǎn),求BD的長(zhǎng)度.

分析 (1))△ABC中,由acosB=($\sqrt{2}$c-b)cosA,利用正弦定理求得cosA=$\frac{\sqrt{2}}{2}$,可得A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.

解答 解:(1)△ABC中,由acosB=($\sqrt{2}$c-b)cosA,利用正弦定理可得sinAcosB=$\sqrt{2}$sinCcosA-sinBcosA,
化簡(jiǎn)可得 sin(A+B)=$\sqrt{2}$sinCcosA,即 sinC=$\sqrt{2}$sinCcosA,求得cosA=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{4}$.
(2)由cosB=$\frac{2\sqrt{5}}{5}$,可得sinB=$\frac{\sqrt{5}}{5}$,再由正弦定理可得$\frac{a}{sinA}=\frac{sinB}$,即$\frac{\sqrt{10}}{\frac{\sqrt{2}}{2}}=\frac{\frac{\sqrt{5}}{5}}$,求得b=AC=2.
△ABC中,由余弦定理可得BC2=AB2+AC2-2AB•AC•cos∠A,即10=AB2+4-2AB•2•$\frac{\sqrt{2}}{2}$,求得AB=3$\sqrt{2}$.
△ABD中,由余弦定理可得 BD2=AB2+AD2-2AB•AD•cos∠A=18+1-6$\sqrt{2}$•$\frac{\sqrt{2}}{2}$=13,
∴BD=$\sqrt{13}$.

點(diǎn)評(píng) 本題主要考查正弦定理和余弦定理的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,若sin(A-B)=1+2cos(B+C)sin(A+C),則△ABC的形狀一定是( 。
A.等邊三角形B.不含60°的等腰三角形
C.鈍角三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{log}_{2}x,x≥1}\\{3f(x+1)+m,x<1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),則實(shí)數(shù)m的取值范圍是m≤-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)a=0.82.1,b=21.1,c=log23,則( 。
A.b<c<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知集合A={x|x2+3x+2≤0},B={x|x2+ax+b≤0}.
(Ⅰ)若(∁RA)∩B={x|-1<x≤2},(∁RA)∪B=R,求a,b的值;
(Ⅱ)若b=1,且A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.1B.2C.2$\sqrt{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.一次考試中,五名學(xué)生的數(shù)學(xué)、物理成績(jī)?nèi)缦卤硭荆?table class="edittable">學(xué)生A1A2A3A4A5數(shù)學(xué)8991939597物理8789899293(1)要在這五名學(xué)生中選2名參加一項(xiàng)活動(dòng),求選中的同學(xué)中至少有一人的物理成績(jī)高于90分的概率.
(2)根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)和散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間線性相關(guān)關(guān)系的強(qiáng)弱,如果具有較強(qiáng)的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,請(qǐng)說(shuō)明理由.
參考公式:
相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i-}\overline{x})^2\sum_{i=1}^{n}({y}_{i}-\overline{y})^2}}$
回歸直線的方程:$\widehat{y}$=$\widehatx+\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^2}$,$\widehat{a}=\widehat{y}-\widehatx$,$\widehat{{y}_{i}}$是與xi對(duì)應(yīng)的回歸估計(jì)值.
參考數(shù)據(jù):$\overline{x}$=93,$\overline{y}$=90,$\sum_{i=1}^{n}{(x}_{i}-\overline{x})^2$=40,$\sum_{i=1}^{n}({y}_{i}-\overline{y})^2$=24,$\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,$\sqrt{40}$≈6.32,$\sqrt{24}$≈4.90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且A=60°,C=45°,c=$\sqrt{2}$,求b及S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知x2+y2-2ax-4ay+4a2=0,求證:
(1)不論a取何值,上述圓的圓心在同一條直線上.
(2)不論a取何值,上述圓都有公切線,并求公切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案