8.如圖,A,B為拋物線y2=4x上的兩點,F(xiàn)為拋物線的焦點且FA⊥FB,C為直線AB上一點且橫坐標為-1,連結(jié)FC.若|BF|=3|AF|,則tanC=$\frac{1}{2}$.

分析 如圖所示,設(shè)|AF|=a,|BF|=3a,可得|AB|=$\sqrt{10}$a,做FH⊥AB于H,求出|FH|,|CH|,即可得出結(jié)論.

解答 解:如圖所示,設(shè)|AF|=a,|BF|=3a,可得|AB|=$\sqrt{10}$a,
作AA′⊥l(l為拋物線的準線),則|AA′|=|AF|=a,|BB′|=|BF|=3a,
|A′B′|=|AD|=$\sqrt{6}$a.△CA′A∽△CB′B,可得$\frac{AA′}{BB′}$=$\frac{1}{3}$,
CA=$\frac{1}{2}$AB=$\frac{\sqrt{10}}{2}$a,
做FH⊥AB于H,△ABF三邊長為a,3a,$\sqrt{10}$a,
∴|FH|=$\frac{3\sqrt{10}}{10}$a,|AH|=$\frac{\sqrt{10}}{10}$a,
∴tanC=$\frac{|FH|}{|CH|}$=$\frac{\frac{3\sqrt{10}}{10}a}{\frac{\sqrt{10}}{2}a+\frac{\sqrt{10}}{10}a}$=$\frac{1}{2}$,
故答案為$\frac{1}{2}$.

點評 本題考查了拋物線的定義,考查三角形相似的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x∈Z,A={奇數(shù)},B={偶數(shù)},若命題p:?x∈A,2x∈B,則其否定為( 。
A.?x∈A,2x∉BB.?x∉A,2x∉BC.?x∉A,2x∈BD.?x∈A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.將函數(shù)y=sinx的圖象上每個點的橫坐標變?yōu)樵瓉淼?\frac{1}{2}$倍(縱坐標不變),再將得到的圖象向左平移$\frac{π}{12}$個單位長度,所得圖象的函數(shù)解析式為y=sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.心理學(xué)家分析發(fā)現(xiàn)“喜歡空間現(xiàn)象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按層抽樣的方法抽取50名同學(xué)(男生30人,女生20人),給每位同學(xué)立體幾何體,代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如表:(單位:人)
立體幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為$\frac{4}{5}$,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學(xué)生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知α是第二象限角,sinα+cosα=$\frac{\sqrt{3}}{3}$,求sin2α、cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合A={1,2,3},B={1,2,3},分別從集合A和B中隨機取一個數(shù)a和b,確定平面上的一個點P(a,b),記“點P(a,b)落在直線x+y=n上”為事件Cn(2≤n≤6,n∈N),若事件Cn的概率最大,則n的所有可能值為( 。
A.4B.2和6C.3和5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=-2x,g(x)=lg(ax2-2x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為( 。
A.(-1,0)B.(0,1)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$tan({α+\frac{π}{4}})=2$,則$\frac{sinα-cosα}{sinα+cosα}$=( 。
A.$\frac{1}{2}$B.2C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出的S的值等于( 。
A.15B.16C.17D.18

查看答案和解析>>

同步練習(xí)冊答案