9.如圖所示,四棱錐P-ABCD的底面ABCD是直角梯形,BC∥AD,AB⊥AD,AB=BC=$\frac{1}{3}$AD,PA⊥底面ABCD,過AB的平面交PD于AB,交PC于N(N與A不重合).
(Ⅰ)求證:MN∥BC;
(Ⅱ)如果BM⊥AC,求此時$\frac{PM}{PD}$的值.

分析 (Ⅰ)證明BC∥平面PAD,利用線面平行的性質(zhì)定理證明MN∥BC;
(Ⅱ)過M作MK∥PA交AD于K,連結(jié)BK,證明AC⊥BK.知$AK=\frac{1}{3}AD$,即可求此時$\frac{PM}{PD}$的值.

解答 (Ⅰ)證明:因為梯形ABCD,且BC∥AD,
又因為BC?平面PAD,AB?平面PAD,
所以BC∥平面PAD.
因為平面BCNM∩平面PAD=MN,
所以MN∥BC. …(4分)
(Ⅱ)解:過M作MK∥PA交AD于K,連結(jié)BK.
因為PA⊥底面ABCD,
所以MK⊥底面ABCD
所以MK⊥AC.
又因為BM⊥AC,BM∩MK=M
所以AC⊥平面BMK,
所以AC⊥BK.
知$AK=\frac{1}{3}AD$,
所以$\frac{PM}{PD}=\frac{1}{3}$.    …(12分)

點評 本題考查線面平行的判定與性質(zhì),考查線面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|1<x-1<3},B={x|(x-3)(x-a)<0},
(1)當(dāng)a=5時,求A∩B,A∪B.
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知全集U=R,集合A={x|x2-6x+5<0},B=$\left\{{\left.x\right|\frac{x-2}{x-4}>0}\right\}$,C={x|3a-2<x<4a-3}求:
(1)A∩B,∁U(A∪B);
(2)若C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤600元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將T表示為X的函數(shù);
(Ⅱ)根據(jù)直方圖估計利潤T不少于60000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某廠生產(chǎn)一種儀器,由于受生產(chǎn)能力與技術(shù)水平的限制,會產(chǎn)生一些次品.根據(jù)經(jīng)驗知道,該廠生產(chǎn)這種儀器,次品率P與日產(chǎn)量x(件)(x∈N*)之間大體滿足如框圖所示的關(guān)系(注:次品率$P=\frac{次品數(shù)}{生產(chǎn)量}$,如P=0.1表示每生產(chǎn)10件產(chǎn)品,約有1件次品,其余為合格品).又已知每生產(chǎn)一件合格的儀器可以盈利A(元),但每生產(chǎn)一件次品將虧損$\frac{A}{2}$(元).
(Ⅰ)求日盈利額T(元)與日產(chǎn)量x(件)(x∈N*)的函數(shù)關(guān)系;
(Ⅱ)當(dāng)日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在某校舉辦的“激揚青春,勇?lián)?zé)任”演講比賽中,有七位評委選手打分,若選手甲所得分數(shù)用莖葉圖表示如圖,則選手甲所得分數(shù)的中位數(shù)為( 。
A.87B.86C.85D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{bn}的前n項和Sn=n2+2n(n∈N+).
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|y=2x},B={x|$\sqrt{x}$≤2,x∈Z},則A∩B=(  )
A.(0,2]B.[0,4]C.{1,2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.冪函數(shù)f(x)的圖象經(jīng)過點($\sqrt{2}$,2),點(-2,$\frac{1}{4}$)在冪函數(shù)g(x)的圖象上,當(dāng)f(x)>g(x)時,x的取值范圍為x<-1或x>1.

查看答案和解析>>

同步練習(xí)冊答案