函數(shù)y=2-x+x2-4的零點(diǎn)個(gè)數(shù)為
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:要判斷函數(shù)f(x)=2-x+x2-4的零點(diǎn)的個(gè)數(shù),即函數(shù)y=2-x與函數(shù)y=-x2+3的圖象的交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合,即可得到答案.
解答: 解:函數(shù)y=2-x+x2-4的零點(diǎn)個(gè)數(shù),
即函數(shù)y=2-x和函數(shù)y=4-x2 的圖象的交點(diǎn)個(gè)數(shù),
數(shù)形結(jié)合可得,函數(shù)y=2-x的圖象(藍(lán)色部分)
和函數(shù)y=4-x2 的圖象(紅色部分)的交點(diǎn)個(gè)數(shù)為2,
故答案為:2.
點(diǎn)評:本題主要考查方程根的存在性以及個(gè)數(shù)判斷,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的圖象上存在不同兩點(diǎn)A,B,設(shè)線段AB的中點(diǎn)為M(x0,y0),使得f(x)在點(diǎn)(x0,f(x0))處的切線l與直線AB平行或重合,則稱切線l為函數(shù)f(x)的“平衡切線”.則函數(shù)f(x)=2aln(x+1)+x2-2x的“平衡切線”的條數(shù)為(  )
A、2條或無數(shù)條
B、1條或無數(shù)條
C、0條或無數(shù)條
D、2條或0條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x-2,x≤1
-
1
x
,1<x≤2
ax+a-1,x>2

(1)若a=1,求方程|f(x)|=5的解.
(2)若f(x)在(-∞,+∞)是單調(diào)遞增的,求實(shí)數(shù)a的范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 某電視臺組織部分記者,用“10分制”隨機(jī)調(diào)查某社區(qū)居民的幸福指數(shù),現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福指數(shù)不低于9.5分,則稱該人的幸福指數(shù)為“極幸福”,求從這16人中隨機(jī)選取2人,至多有1人是“極幸!钡母怕剩

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=2,an-+1=2(1+
1
n
2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(An2+Bn+C)•2n,試推斷是否存在常數(shù)A、B、C,使對于一切n∈N*都有an=bn+1-bn成立?若存在,求出A,B,C的值;若不存在,說明理由.
(3)求:
n
n=1
an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法,其中正確命題的序號為
 

①若函數(shù)f(x)=x(x-c)2在x=2處有極大值,則c=2實(shí)數(shù)或6;
②對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)f′(x)≥0,則必有f(0)+f(2)>2f(1);
③若函數(shù)f(x)=x3-3x在(a2-17,a)上有最大值,則實(shí)數(shù)a的取值范圍為(-1,4);
④已知函數(shù)f(x)是定義在R上的奇函數(shù)f(1)=0,xf′(x)-f(x)>0(x>0),則不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面的數(shù)表序列:

其中表n(n=1,2,3…)有n行,第1行的n個(gè)數(shù)是1,3,5,…2n-1,從第2行起,每行中的每個(gè)數(shù)都等于它肩上的兩數(shù)之和.
(Ⅰ)寫出表4,驗(yàn)證表4各行中的數(shù)的平均數(shù)按從上到下的順序構(gòu)成等比數(shù)列,并將此結(jié)論推廣到表n(n≥3)(不要求證明);
(Ⅱ)每個(gè)數(shù)列中最后一行都只有一個(gè)數(shù),它們構(gòu)成數(shù)列1,4,12,…,記此數(shù)列為{bn},求和:
b3
b1b2
+
b4
b2b3
+…+
bn+2
b nbn+1
   (n∈N*);
(Ⅲ)已知當(dāng)n∈N*,?n≥6,不等式(1-
m
n+3
)<(
1
2
m(其中m=1,2,3,…,n)成立,求出滿足等式3n+4n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=an+ln(1+
1
n
),則an=( 。
A、2+ln n
B、2+(n-1)ln n
C、2+n ln n
D、1+n+ln n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中山紀(jì)念中學(xué)高二A、B兩個(gè)班參加了2012年的“廣州一模數(shù)學(xué)考試”,按照成績大于等于125分為“優(yōu)秀”,成績小于125分為“非優(yōu)秀”,根據(jù)調(diào)查這兩個(gè)班的數(shù)學(xué)成績得到的數(shù)據(jù),所繪制的二維條形圖如圖.
(Ⅰ)根據(jù)圖中數(shù)據(jù),制作2×2列聯(lián)表;
(Ⅱ)計(jì)算隨機(jī)變量K2的值(精確到0.001)
(Ⅲ)判斷在多大程度上可以認(rèn)為“成績與班級有關(guān)系”?(溫馨提示:答題前請仔細(xì)閱讀卷首所給的計(jì)算公式及其參考值)

查看答案和解析>>

同步練習(xí)冊答案