1.向量的數(shù)量積的定義:$\overrightarrow{a}$•$\overrightarrow$=$\left|\overrightarrow{a}\right|\left|\overrightarrow\right|cos<\overrightarrow{a},\overrightarrow>$,特別的|$\overrightarrow{a}$|=$\sqrt{\overrightarrow{a}•\overrightarrow{a}}$=$\sqrt{{\overrightarrow{a}}^{2}}$.

分析 直接利用數(shù)量積個數(shù)寫出結(jié)果即可.

解答 解:向量的數(shù)量積的定義:$\overrightarrow{a}$•$\overrightarrow$=$\left|\overrightarrow{a}\right|\left|\overrightarrow\right|cos<\overrightarrow{a},\overrightarrow>$,
故答案為:$\left|\overrightarrow{a}\right|\left|\overrightarrow\right|cos<\overrightarrow{a},\overrightarrow>$.

點(diǎn)評 本題考查向量的數(shù)量積公式,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.y=sinx的圖象與y=-sinx的圖象關(guān)于x軸,y軸對稱.
y=cosx的圖象與y=-cosx的圖象關(guān)于x對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,若a=6,∠C=60°,S△ABC=$\frac{15\sqrt{3}}{2}$,求b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(2x+1)=x2-2x,則f($\sqrt{2}$)=$\frac{5-4\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某處發(fā)生火災(zāi),急需提供A,B,C三種型號的滅火器進(jìn)行救援,其中A,B,C三種型號的產(chǎn)品數(shù)量依次構(gòu)成公比為3的等比數(shù)列,現(xiàn)用分層抽樣的方法抽取一個容量為130的樣本,則應(yīng)從C型號產(chǎn)品中抽取的數(shù)量為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=x+yi(x、y∈R),且有$\frac{x}{1-i}=1+yi$,則|z|=( 。
A.5B.$\sqrt{5}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知向量$\overrightarrow{a}$=(1,2,3),$\overrightarrow$=(-1,$\frac{1}{2}$,m),且$\overrightarrow{a}$⊥$\overrightarrow$,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=loga(1-2x)-loga(1+2x)(a>0,a≠1).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明;
(3)求使f(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在極坐標(biāo)系中,P為曲線C1:p=2cosθ上的任意一點(diǎn),點(diǎn)Q在射線OP上,且滿足|OP|•|OQ|=6,記Q點(diǎn)的軌跡為C2
(Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l:θ=$\frac{π}{3}$分別交C1與C2于點(diǎn)A、B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊答案