3.已知復(fù)數(shù)z=x+yi(x、y∈R),且有$\frac{x}{1-i}=1+yi$,則|z|=( 。
A.5B.$\sqrt{5}$C.3D.$\sqrt{3}$

分析 利用復(fù)數(shù)的乘法運(yùn)算法則化簡復(fù)數(shù),通過復(fù)數(shù)相等求出結(jié)果即可.

解答 解:復(fù)數(shù)z=x+yi(x、y∈R),且有$\frac{x}{1-i}=1+yi$,
x=1+y+(y-1)i,
解得y=1,x=2,
|z|=|2+i|=$\sqrt{5}$.
故選:B.

點評 本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的模的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=lnx-$\frac{1}{x}$,則f′(-$\frac{1}{2}$)=(  )
A.6B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)U=R,集合A={-2,-1},B={x|x2+(m+1)x+m=0}且(∁UA)∩B=∅,則m=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)y=arcsin(x2-$\frac{1}{4}$)的最大值為α,最小值為β,則sin[π+(β-α)]=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.向量的數(shù)量積的定義:$\overrightarrow{a}$•$\overrightarrow$=$\left|\overrightarrow{a}\right|\left|\overrightarrow\right|cos<\overrightarrow{a},\overrightarrow>$,特別的|$\overrightarrow{a}$|=$\sqrt{\overrightarrow{a}•\overrightarrow{a}}$=$\sqrt{{\overrightarrow{a}}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=x|x-1|+m.
(1)當(dāng)m=-2時,解關(guān)于x的不等式f(x)>0.
(2)當(dāng)m>1時,求函數(shù)y=f(x)在[0,m]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.保持合理車流密度是保證高速公路暢通的重要因素,距車管部門測算,車流速度v與車流密度x滿足如下關(guān)系;當(dāng)車流密度不超過40輛/千米時,車流速度可以達(dá)到90千米/小時;當(dāng)車流密度達(dá)到400輛/千米時,發(fā)生堵車現(xiàn)象,即車流速度為0千米/小時;當(dāng)車流密度在40輛/千米時到400輛/千米范圍內(nèi),車流速度v與車流密度x滿足一次函數(shù)關(guān)系.
(1)求車流速度v與車流密度x的函數(shù)關(guān)系式v(x);
(2)試確定合理的車流密度,使得車流量(車流量=車流速度v(x)×車流密度(x))最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知ABCD為正方形,點P為平面ABCD外一點,面PCD⊥面ABCD,PD=AD=PC=2,則點C到平面PAB的距離為$\frac{2\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.公差不為零的等差數(shù)列{an}中,a1,a2,a5成等比數(shù)列,且該數(shù)列的前10項和為100,數(shù)列{bn}的前n項和為Sn,且滿足Sn=a${\;}_{_{n}}$,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)記得數(shù)列{$\frac{1+{a}_{n}}{4_{n}}$}的前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案