【題目】如圖,給出的是計(jì)算1+ + +…+ + 的值的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是( )
A.i<101?
B.i>101?
C.i≤101?
D.i≥101?
【答案】C
【解析】解:程序運(yùn)行過程中,各變量值如下表所示:
第1次循環(huán):S=0+1,i=1,
第2次循環(huán):S=1+ ,i=3,
第3次循環(huán):S=1+ + ,i=5,…
依此類推,第51次循環(huán):S=1+ + +…+ ,i=101,退出循環(huán)
其中判斷框內(nèi)應(yīng)填入的條件是:i≤101,
故選:C.
【考點(diǎn)精析】掌握程序框圖是解答本題的根本,需要知道程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=1an+1= ,n∈N*.
(1)求證數(shù)列 為等比數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題.他們在沙灘上畫點(diǎn)或用小石子表示數(shù),按照點(diǎn)或小石子能排列的形狀對數(shù)進(jìn)行分類.如下圖中實(shí)心點(diǎn)的個(gè)數(shù)5,9,14,20,…為梯形數(shù).根據(jù)圖形的構(gòu)成,記此數(shù)列的第2013項(xiàng)為a2013 , 則a2013﹣5=( )
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃種植A,B兩種中藥材,該公司最多能承包50畝的土地,可使用的周轉(zhuǎn)資金不超過54萬元,假設(shè)藥材A售價(jià)為0.55萬元/噸,產(chǎn)量為4噸/畝,種植成本1.2萬元/畝;藥材B售價(jià)為0.3萬元/噸,產(chǎn)量為6噸/畝,種植成本0.9萬元/畝時(shí)公司的總利潤最大,則A,B兩種中藥材的種植面積應(yīng)各為多少畝,最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= (m∈R,x>m).
(1)若f(x)+m≥0恒成立,求m的取值范圍;
(2)若f(x)的最小值為6,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知向量 , ,且 .
(1)求角B的大;
(2)若b=2,△ABC的面積為 ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn)03.5,用水量不超過a的部分按照平價(jià)收費(fèi),超過a的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.
(1)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請?jiān)趫D中將其補(bǔ)充完整;
(2)用樣本估計(jì)總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn)03.5,則月均用水量的最低標(biāo)準(zhǔn)定為多少噸,請說明理由;
(3)從頻率分布直方圖中估計(jì)該100位居民月均用水量的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(0,1),B(0,﹣1),C(﹣2,1).
(I)求AC邊中線所在直線方程;
(II)求△ABC的外接圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=mx2+4x+1,且滿足f(﹣1)=f(3).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)的定義域?yàn)椋ī?,2),求f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com