分析 先把原不等式整理后轉(zhuǎn)化為($\frac{1}{{m}^{2}}$-4m2-1)x2+2x+3≤0,即為$\frac{1}{{m}^{2}}$-4m2-1≤$\frac{-2x-3}{{x}^{2}}$對任意$x∈[-\frac{3}{2},-\frac{3}{4}]$恒成立.再利用配方,運(yùn)用單調(diào)性,即可得到右邊函數(shù)的最小值,解不等式即可得到m的范圍.
解答 解:不等式$f(\frac{x}{m})-4{m^2}f(x)≤f(x-1)+4f(m)$,
整理得($\frac{1}{{m}^{2}}$-4m2-1)x2+2x+3≤0,
即為$\frac{1}{{m}^{2}}$-4m2-1≤$\frac{-2x-3}{{x}^{2}}$對任意$x∈[-\frac{3}{2},-\frac{3}{4}]$恒成立.
令g(x)=$\frac{-2x-3}{{x}^{2}}$=-3($\frac{1}{x}$+$\frac{1}{3}$)2+$\frac{1}{3}$,
由$x∈[-\frac{3}{2},-\frac{3}{4}]$,可得$\frac{1}{x}$∈[-$\frac{4}{3}$,-$\frac{2}{3}$],
由二次函數(shù)的性質(zhì)可得x=-$\frac{4}{3}$取得最小值,
且為g(-$\frac{4}{3}$)=-$\frac{8}{3}$,
即有$\frac{1}{{m}^{2}}$-4m2-1≤-$\frac{8}{3}$,
解得m2≥$\frac{3}{4}$,
即有m≥$\frac{\sqrt{3}}{2}$或m≤-$\frac{\sqrt{3}}{2}$.
故答案為:(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞).
點(diǎn)評 本題主要考查函數(shù)的恒成立問題.注意運(yùn)用參數(shù)分離和運(yùn)用函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-7,+∞) | B. | (-7,$\frac{1}{2}}$)∪(${\frac{1}{2}$,+∞) | C. | [-7,+∞) | D. | [-7,$\frac{1}{2}}$)∪(${\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-$\frac{2}{3}$ e | B. | 1+$\frac{2}{3}$e | C. | $\frac{2}{3}$e | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ξ | 1 | 2 | 3 | 4 | 5 |
P | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com