8.已知函數(shù)f(x)=cos$(2ωx+\frac{π}{3})$+$\frac{1}{2}$ (ω>0)的最小正周期是π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心;
(2)若A為鈍角三角形ABC的最小內(nèi)角,求f(A)的取值范圍.

分析 (1)由周期公式可求ω,從而可得函數(shù)解析式f(x)=cos(2x+$\frac{π}{3}$)+$\frac{1}{2}$,由-π+2kπ≤2x+$\frac{π}{3}$≤2kπ,k∈Z,即可解得單調(diào)遞增區(qū)間.令2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ,即可解得對稱中心.
(2)由0<A<$\frac{π}{3}$,可得范圍$\frac{π}{3}$<2A+$\frac{π}{3}$<π,由余弦函數(shù)的圖象和性質(zhì)即可求得f(A)的取值范圍.

解答 解:(1)∵T=$\frac{2π}{2ω}$=π,∴ω=1.
∴f(x)=cos(2x+$\frac{π}{3}$)+$\frac{1}{2}$,
由-π+2kπ≤2x+$\frac{π}{3}$≤2kπ,k∈Z,得-$\frac{2π}{3}$+kπ≤x≤-$\frac{π}{6}$+kπ,k∈Z.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[-$\frac{2π}{3}$+kπ,-$\frac{π}{6}$+kπ],k∈Z.
令2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ,∴x=$\frac{π}{12}$+$\frac{kπ}{2}$,k∈Z.
∴對稱中心為($\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{1}{2}$),k∈Z.
(2)依題意,得0<A<$\frac{π}{3}$,∴$\frac{π}{3}$<2A+$\frac{π}{3}$<π,∴-1<cos(2A+$\frac{π}{3}$)<$\frac{1}{2}$,
∴-$\frac{1}{2}$<cos(2A+$\frac{π}{3}$)+$\frac{1}{2}$<1,
∴f(A)的取值范圍為$(-\frac{1}{2},1)$.

點評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的化簡求值,余弦函數(shù)的圖象和性質(zhì),屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$x∈({-\frac{1}{2},\frac{1}{2}})$,則(1-2x)x2(1+2x)的最大值為( 。
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知袋中裝有標號為1,2,3的三個小球,從中任取一個小球(取后放回),連取三次,則取到的小球的最大標號為3的概率為(  )
A.$\frac{2}{3}$B.$\frac{19}{27}$C.$\frac{20}{27}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設函數(shù)f(x)=x2-1,對任意$x∈[-\frac{3}{2},-\frac{3}{4}]$,$f(\frac{x}{m})-4{m^2}f(x)≤f(x-1)+4f(m)$恒成立,則實數(shù)m的取值范圍是(-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若關(guān)于x的不等式ax2+ax+1>0(a≠0)恒成立,則$\frac{9}{a}$+a的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.要證:a2+b2-1-a2b2≤0,只要證明( 。
A.2ab-1-a2b2≤0B.${a^2}+{b^2}-1-\frac{{{a^4}+{b^4}}}{2}≤0$
C.$\frac{{{{(a+b)}^2}}}{2}-1-{a^2}{b^2}≤0$D.(a2-1)(b2-1)≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)f(x)=2x3-4x 的單調(diào)遞減區(qū)間是(  )
A.(-$\sqrt{6}$,$\sqrt{6}$)B.(-$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{2}}{3}$)C.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)D.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.復數(shù)z的共軛復數(shù)記為$\overline{z}$,復數(shù)z、$\overline{z}$分別對應點Z、$\overline{Z}$.設A是一些復數(shù)對應的點組成的集合,若對任意的Z∈A,都有$\overline{Z}$∈A,就稱A為“共軛點集”.給出下列點集:
①{(x,y)|x2+(y-1)2≤1};   ②{(x,y)|$\left\{\begin{array}{l}{y>2x-4}\\{y<-2x+4}\\{x>0}\end{array}\right.$};    ③{(x,y)|$\frac{{x}^{2}}{2}$-y2=1};
④{(x,y)|y=2x}.其中是“共軛點集”的有②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{2π}{3}$B.πC.D.

查看答案和解析>>

同步練習冊答案