14.從2,0,1,6四個數(shù)中隨機(jī)取兩個數(shù)組成一個兩位數(shù),并要求所取得較大的數(shù)為十位數(shù)字,較小的數(shù)為個位數(shù)字,則所組成的兩位數(shù)是奇數(shù)的概率P=$\frac{1}{3}$.

分析 利用列舉法求出基本事件總數(shù)和所組成的兩位數(shù)是奇數(shù),包含的基本事件個數(shù),由此能求出所組成的兩位數(shù)是奇數(shù)的概率.

解答 解:從2,0,1,6四個數(shù)中隨機(jī)取兩個數(shù)組成一個兩位數(shù),并要求所取得較大的數(shù)為十位數(shù)字,較小的數(shù)為個位數(shù)字,
基本事件有10,20,21,60,61,62,
所組成的兩位數(shù)是奇數(shù),包含的基本事件有21,61,
∴所組成的兩位數(shù)是奇數(shù)的概率p=$\frac{2}{6}$=$\frac{1}{3}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了解某天甲乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和15件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克).當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175且y≥75時,該產(chǎn)品為優(yōu)等品.已知甲廠該天生產(chǎn)的產(chǎn)品共有98件,如表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(1)求乙廠該天生產(chǎn)的產(chǎn)品數(shù)量;
(2)用上述樣本數(shù)據(jù)估計乙廠該天生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品至少有1件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過點(3,1)作圓(x-1)2+y2=r2的切線有且只有一條,則該切線的方程為( 。
A.2x+y-5=0B.2x+y-7=0C.x-2y-5=0D.x-2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正項數(shù)列{an}的前n項和為Sn,對任意n∈N+都有a31+a32+a33+…+a3n=S2n+2Sn
(1)求a1,a2;
(2)求an及數(shù)列{3${\;}^{{a}_{n}}$-26an}的前n項和Tn的最小值;
(3)設(shè)bn=3n+(-1)n-1•t•2${\;}^{{a}_{n}}$,對任意n∈N+都有bn+1>bn恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某公司對新研發(fā)的一種產(chǎn)品進(jìn)行試銷,得到如表數(shù)據(jù)及散點圖:
利潤x(元/kg)102030405060
年銷量y(kg)115064342426216586
Z=2ln(y)14.112.912.111.110.28.9
其中z=2ln(y),$\overline x=35,\;\;\overline y=455,\;\;\;\overline z=11.55$$\sum_{i=1}^{i=6}{({x_i}}-\overline x{)^2}=1750$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({y_i}-\overline y)=-34580$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({z_i}-\overline z)=-175.5$,${\sum_{i=1}^{i=6}{({{y_i}-\overline y})}^2}=776840$,$\sum_{i=1}^{i=6}{({{y_i}-\overline y})}•({{z_i}-\overline z})=3465.2$
(Ⅰ)根據(jù)散點圖判斷,y與x、z與x哪一對具有較強線性相關(guān)性?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及數(shù)據(jù),建立y關(guān)于x的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字)
(Ⅲ)利潤為多少元/kg時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回歸直線$\overline{y}$=$\stackrel{∧}{a}$+
$\stackrel{∧}$$\overline{x}$的斜率和截距的最小二乘估計分別為:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^{i=n}{{x_i}•{y_i}-n•\overline x\overline{•y}}}}{{\sum_{i=1}^{i=n}{{x_i}^2-n•{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓y2+$\frac{{x}^{2}}{{m}^{2}}$=1(0<m<1)上存在點P使得PF1⊥PF2,則m的取值范圍是(  )
A.[$\frac{\sqrt{2}}{2}$,1)B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知p:函數(shù)f(x)=lg(ax2-x+$\frac{1}{16}$a)的定義域為R;q:a≥1.如果命題“p∨q為真,p∧q為假”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.方程anx2-an+1x+1=0有兩個實根x1,x2,滿足6x1-2x1x2+6x2=3,且a1=$\frac{7}{6}$,求an=$\frac{1}{{2}^{n}}$+$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.集合A={x||x|≤4,x∈R},B={x||x-3|<a,x∈R},若A?B,那么a的取值范圍是( 。
A.0≤a≤1B.a≤1C.a<1D.0<a<1

查看答案和解析>>

同步練習(xí)冊答案