9.在△ABC中,已知a=2,B=45°,cosA=-$\frac{3}{5}$.
(1)求b、c邊的長;
(2)求△ABC的面積.

分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式可求sinA的值,由正弦定理可求得b的值,由余弦定理a2=b2+c2-2bccosA,可得8c2+12c-7=0,即可解得c的值.
(2)利用三角形面積公式即可計(jì)算得解.

解答 解:(1)∵在△ABC中,已知a=2,B=45°,cosA=-$\frac{3}{5}$.
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×sin45°}{\frac{4}{5}}$=$\frac{5\sqrt{2}}{4}$,
∵由余弦定理:a2=b2+c2-2bccosA,可得:22=($\frac{5\sqrt{2}}{4}$)2+c2-2×$\frac{5\sqrt{2}}{4}$×c×(-$\frac{3}{5}$),整理可得:8c2+12c-7=0,
∴解得:c=$\frac{\sqrt{2}}{4}$或-$\frac{7\sqrt{2}}{4}$(舍去).
(2)S△ABC=$\frac{1}{2}bcsinA$=$\frac{1}{2}×$$\frac{5\sqrt{2}}{4}$×$\frac{\sqrt{2}}{4}$×$\frac{4}{5}$=$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線y=k(x+1)上存在點(diǎn)(x,y)滿足約束條件$\left\{\begin{array}{l}{x-y+\sqrt{3}≥0}\\{\sqrt{3}x-y-\sqrt{3}≤0}\\{y≥\sqrt{3}}\\{\;}\end{array}\right.$,則直線y=k(x+1)的傾斜角的取值范圍為$[{\frac{π}{6},\frac{π}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在平面直角坐標(biāo)系中,已知A(cosα,sinα),B(cosβ,sinβ),P(cosγ,sinγ)α,β,γ∈[0,2π),α≠β≠γ,設(shè)f(x)=|$\overrightarrow{BP}$-x$\overrightarrow{BA}$|(x∈R)的最小值為M(γ),若M(γ)的最大值為$\frac{5}{4}$,則|$\overrightarrow{AB}$|的值等于$\frac{\sqrt{15}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|y=$\sqrt{4-{x}^{2}}$},B={x|a≤x≤a+1},若A∪B=A,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow$=(1,0),則|2$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ax3+$\frac{1}{2}$x2在x=1處的切線方程為4x-2y-5=0,記g(x)=$\frac{1}{f′(x)}$,程序框圖如圖所示,若輸出的結(jié)果S>$\frac{2011}{2012}$,則判斷框中可以填入的關(guān)于n的判斷條件是( 。
A.n≤2011?B.n>2011?C.n≤2012?D.n>2012?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a=log0.50.4,b=$(\frac{1}{2})^{\frac{1}{2}}$,c=($\frac{1}{3}$)${\;}^{\frac{1}{3}}$則a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>a>cC.c>b>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知命題p:方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m+3}$=1表示的曲線為雙曲線;q:函數(shù)y=(m2-m-1)x為增函數(shù),分別求出符合下列條件的實(shí)數(shù)m的范圍.
(Ⅰ)若命題“p且q”為真;
(Ⅱ)若命題“p或q”為真,“p且q”為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知等差數(shù)列{an}中,a1=5,a6+a8=58,則公差d=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案