分析 把已知方程組中第一式變形,得到2y+z=x+2u≥2$\sqrt{2xu}$,結(jié)合第二式得到2y+z≥4$\sqrt{yz}$,兩邊同時(shí)除以y,得到關(guān)于$\sqrt{\frac{z}{y}}$的不等式,換元后求解不等式得到$\sqrt{\frac{z}{y}}$的范圍,則答案可求.
解答 解:由題意,2y+z=x+2u≥2$\sqrt{2xu}$=4$\sqrt{yz}$,
∴2+$\frac{z}{y}$≥4$\sqrt{\frac{z}{y}}$,
令t=$\sqrt{\frac{z}{y}}$,則t≥1,2+t2≥4t,
∴t2-4t+2≥0,
∵t≥1,
∴t≥2+$\sqrt{2}$,
∴$\frac{z}{y}$=t2≥6+4$\sqrt{2}$,
∵存在正實(shí)數(shù)M,且滿足M≤$\frac{z}{y}$,
∴M≤6+4$\sqrt{2}$,
∴M的最大值是6+4$\sqrt{2}$.
故答案為:6+4$\sqrt{2}$.
點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,正確運(yùn)用基本不等式是關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,0) | C. | (1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 莖葉圖 | B. | 分層抽樣 | C. | 獨(dú)立性檢驗(yàn) | D. | 回歸直線方程 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 80 | B. | -80? | C. | 40 | D. | -40 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com