14.?dāng)?shù)列{an}中,已知a61=2000,且an+1=an+n,則a1等于170.

分析 利用a61=(a61-a60)+(a60-a59)+…+(a2-a1)+a1即可得出.

解答 解:∵a61=2000,an+1-an=n,
則a61=(a61-a60)+(a60-a59)+…+(a2-a1)+a1
=(60+59…+1)+a1
=$\frac{60(60+1)}{2}$+a1
=1830+a1=2000,
∴a1=170,
故答案為:170

點(diǎn)評 本題考查了等差數(shù)列的前n項(xiàng)和公式、“累加求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果f(x)是定義在R上的奇函數(shù),那么下列函數(shù)中,一定為偶函數(shù)的是( 。
A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求滿足(1-$\frac{1}{{T}_{2}}$)(1-$\frac{1}{{T}_{3}}$)…(1-$\frac{1}{{T}_{n}}$)>$\frac{51}{101}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+4≥0}\\{2x-y-1≤0}\end{array}\right.$,則z=2x+y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.a(chǎn)1=1,an+1-an=4n+5,則an=2n2+3n-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)M在雙曲線C:x2-y2=λ(λ為正常數(shù))上,過點(diǎn)M作雙曲線C的某一條漸近線的垂線,垂足為N,則|ON|•|MN|的值為( 。
A.$\frac{λ}{4}$B.$\frac{λ}{2}$C.λD.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的通項(xiàng)公式an=2n2+n.
(1)求a8,a10
(2)問:110是不是它的項(xiàng)?若是,為第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知|$\overrightarrow{a}$|=5,$\overrightarrow$=(3,2),$\overrightarrow{a}$⊥$\overrightarrow$,求$\overrightarrow{a}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若角α的終邊落在直線x+y=0上,則tanα的值為(  )
A.-1B.1C.±1D.0

查看答案和解析>>

同步練習(xí)冊答案