【題目】如圖,已知橢圓 =1(a>b>0),F(xiàn)1 , F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且 =2 ,求橢圓的方程.
【答案】
(1)解:若∠F1AB=90°,則△AOF2為等腰直角三角形.則|OA|=|OF2|,即b=c.
∴a= = c,
橢圓的離心率e= = ;
(2)由題知2c=2,c=1,則A(0,b),F(xiàn)2(1,0),設(shè)B(x,y),
由 =2 ,即(1,﹣b)=2(x﹣1,y),
∴ ,解得x= ,y=﹣ .
代入橢圓 =1,即 解得a2=3.b2=a2﹣c2=2,
∴橢圓方程為 .
【解析】(1)若∠F1AB=90°,則△AOF2為等腰直角三角形.即b=c.則可求出e的值。
(2)有題目可知A(0,b),F(xiàn)2(1,0),設(shè)B(x,y)。由可得B點(diǎn)坐標(biāo),代入橢圓方程即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1 , z2是復(fù)數(shù),則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則 =z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(1)設(shè)函數(shù) ,求 的最大值;
(2)試判斷方程 在 內(nèi)存在根的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.
(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行 | 輸出y的值 | 輸出y的值 | 輸出y的值 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行 | 輸出y的值 | 輸出y的值 | 輸出y的值 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編寫程序符合算法要求的可能性較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P(x0 , y0)(x0≠±a)是雙曲線E: 上一點(diǎn),M,N分別是雙曲線E的左右頂點(diǎn),直線PM,PN的斜率之積為 .
(1)求雙曲線的離心率;
(2)過雙曲線E的右焦點(diǎn)且斜率為1的直線交雙曲線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線上一點(diǎn),滿足 ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓 (a>b>0)與直線x+y=1交于P、Q兩點(diǎn),且OP⊥OQ,其中O為坐標(biāo)原點(diǎn).
(1)求 的值;
(2)若橢圓的離心率e滿足 ≤e≤ ,求橢圓長軸的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求證: ;
(3)是否存在正整數(shù),使得對(duì)任意正整數(shù)均成立?若存在,求出的最大值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 中,角 的對(duì)邊分別為 ,且 .
(1)求 Δ A B C 的面積;
(2)求 Δ A B C 中最大角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com