14.下列函數(shù)既不是偶函數(shù)也不是奇函數(shù)的是( 。
A.f(x)=ex+e-xB.f(x)=ex-e-xC.f(x)=x|x|D.f(x)=cos(x-1)

分析 利用奇偶函數(shù)的定義,分析4個(gè)函數(shù),即可得出結(jié)論.

解答 解:對(duì)于A,f(-x)=f(x),函數(shù)是偶函數(shù);
對(duì)于B,f(-x)=-f(x),函數(shù)是奇函數(shù);
對(duì)于C,y=x|x|=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$,圖象關(guān)于原點(diǎn)對(duì)稱(chēng),函數(shù)是奇函數(shù);
對(duì)于D,不滿足f(-x)=f(x),f(-x)=-f(x),函數(shù)既不是偶函數(shù)也不是奇函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,正確運(yùn)用奇偶函數(shù)的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函敷f(x)=|x+2|-|x-1|,
(Ⅰ)若關(guān)于x的不等式f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)求不等式f(x)≥|x-1|-2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知由實(shí)數(shù)構(gòu)成的集合A滿足條件:若a∈A,a≠1,則$\frac{1}{1-a}∈A$.
(1)若2∈A,則A中必還有另外兩個(gè)元素,求出這兩個(gè)元素;
(2)求證:若a∈A,a≠1,則1-$\frac{1}{a}$∈A;
(3)求證:A不可能是單元素集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=log2sinx,當(dāng)x∈[$\frac{π}{6}$,$\frac{3π}{4}$)時(shí)的值域?yàn)閇-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知{an}是斐波那契數(shù)列,滿足a1=1,a2=1,an+2=an+1+an(n∈N*).{an}中各項(xiàng)除以4所得余數(shù)按原順序構(gòu)成的數(shù)列記為{bn},則b2015=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某超市五一促銷(xiāo),隨機(jī)對(duì)10~60歲的人群抽查了n人,調(diào)查的每個(gè)人若能完整寫(xiě)出5個(gè)或5個(gè)以上外國(guó)節(jié)日,則能獲得20元優(yōu)惠券的獎(jiǎng)勵(lì),若能完整寫(xiě)出8個(gè)或8個(gè)以上中國(guó)傳統(tǒng)節(jié)日就能獲得30元優(yōu)惠券,調(diào)查的每個(gè)人都同時(shí)回答了這兩個(gè)問(wèn)題,統(tǒng)計(jì)結(jié)果如下表
(Ⅰ)若以表中的頻率近似看作各年齡段回答問(wèn)題獲得優(yōu)惠劵的概率,組織者隨機(jī)請(qǐng)一個(gè)家庭中的兩名成員(大人42歲,孩子16歲)回答這兩個(gè)問(wèn)題,兩個(gè)調(diào)查相互獨(dú)立均無(wú)影響,分別寫(xiě)出這個(gè)家庭兩個(gè)成員獲得獎(jiǎng)勵(lì)的分布列并求該家庭獲得獎(jiǎng)勵(lì)的期望;
(Ⅱ)求該家庭獲得獎(jiǎng)勵(lì)為50元優(yōu)惠券的概率.
年齡段外國(guó)傳統(tǒng)節(jié)日中國(guó)傳統(tǒng)節(jié)日
獲優(yōu)惠劵的人數(shù)占本組人數(shù)頻率獲優(yōu)惠券的人數(shù)占本組人數(shù)頻率
[10,20)30a300.5
[20,30)480.8360.6
[30,40)360.6480.8
[40,50)200.524b
[50,60]40.2160.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)=x2-cosx,則下列不等式成立的是( 。
A.f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$)D.f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知cosα=$\frac{\sqrt{2}}{3}$,α∈($\frac{3π}{2}$,2π),則sin($α+\frac{5π}{6}$)的值為(  )
A.$\frac{\sqrt{21}+\sqrt{2}}{6}$B.$\frac{\sqrt{21}-\sqrt{2}}{6}$C.$\frac{-\sqrt{21}+\sqrt{2}}{6}$D.$\frac{-\sqrt{21}-\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓(x-1)2+y2=R2(R>0)與橢圓$\frac{{x}^{2}}{4}$+y2=1有公共點(diǎn),求圓的半徑R的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案