點(diǎn)P(4,-2,6)關(guān)于xOy平面的對(duì)稱(chēng)點(diǎn)坐標(biāo)為
 
考點(diǎn):空間中的點(diǎn)的坐標(biāo)
專(zhuān)題:空間位置關(guān)系與距離
分析:直接利用空間直角坐標(biāo)系,求出點(diǎn)P(4,-2,6)關(guān)于xoy平面的對(duì)稱(chēng)點(diǎn)的坐標(biāo)即可.
解答: 解:點(diǎn)P(4,-2,6)關(guān)于xoy平面的對(duì)稱(chēng)點(diǎn),縱橫坐標(biāo)不變,豎坐標(biāo)變?yōu)橄喾磾?shù),即所求的坐標(biāo)(4,-2,-6),
故答案為:(4,-2,-6).
點(diǎn)評(píng):本題是基礎(chǔ)題,考查空間直角坐標(biāo)系對(duì)稱(chēng)點(diǎn)的坐標(biāo)的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式:f(x)+f(x-1)≤2;
(Ⅱ)當(dāng)a>0時(shí),不等式2a-3≥f(ax)-af(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心C與點(diǎn)A(2,1)關(guān)于直線(xiàn)4x+2y-5=0對(duì)稱(chēng),圓C與直線(xiàn)x+y+2=0相切.
(Ⅰ)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),若點(diǎn)P(1,1),M(-2,-2),求
PQ
MQ
的最小值;
(Ⅱ)過(guò)點(diǎn)P(1,1)作兩條相異直線(xiàn)分別與圓C相交于A,B,且直線(xiàn)PA和直線(xiàn)PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線(xiàn)OP和AB是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某校高三學(xué)生的視力情況,隨機(jī)抽查了該校50名高三學(xué)生,得到如圖所示的頻率分布直方圖.
(Ⅰ)求圖中x的值;
(Ⅱ)若從視力在[0.2,0.6)的學(xué)生中隨機(jī)選取2人,求這2人視力均在[0.2,0.4)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y,z∈R+,x2+y2+z2=1,則S=
(1+z)2
2xyz
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于以下結(jié)論:
①若y=f(x)是奇函數(shù),則f(0)=0;
②已知p:事件A、B是對(duì)立事件,q:事件A、B是互斥事件,則p是q的必要但不充分條件;
ln5
5
ln3
3
1
e
(e為自然對(duì)數(shù)的底數(shù));
④若
a
=(1,2),
b
=(0,-1),則
b
a
上的投影為
2
5
5
;
⑤若隨機(jī)變量ξ~N(1,4),則P(ξ≤1)=
1
2

其中,正確結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的不等|x+2a|+2-x>0的解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于實(shí)數(shù)x的不等式|x-5|+|x+3|>a解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了得到函數(shù)y=
2
2
(sin2x-cos2x)的圖象,只要把函數(shù)y=sin2x的圖象上所有的點(diǎn)( 。
A、向左平行移動(dòng)
π
4
個(gè)單位
B、向右平行移動(dòng)
π
4
個(gè)單位
C、向左平行移動(dòng)
π
8
個(gè)單位
D、向右平行移動(dòng)
π
8
個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案