20.在等差數(shù)列{an}中,若a1-a4+a8-a12+a15=2,則S15等于30.

分析 先利用等差數(shù)列的通項公式求出a8=2,再利用等差數(shù)列前n項和公式S15=$\frac{15}{2}({a}_{1}+{a}_{15})$=15a8求解.

解答 解:∵在等差數(shù)列{an}中,
a1-a4+a8-a12+a15=2,
∴a1-a1-3d+a1+7d-a1-11d+a1+14d=a1+7d=a8=2
∴S15=$\frac{15}{2}({a}_{1}+{a}_{15})$=15a8=30.
故答案為:30.

點評 本題考查等差數(shù)列的前15項和的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.反比例函數(shù)y=$\frac{k}{x}$(k≠0)的圖象經(jīng)過(-2,5)和($\sqrt{2}$,n),
求(1)n的值;
(2)判斷點B(4$\sqrt{2}$,-$\sqrt{2}$)是否在這個函數(shù)圖象上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$\frac{3π}{4}$<α<π,$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=-$\frac{10}{3}$,則$\frac{5si{n}^{2}\frac{α}{2}+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$的值為( 。
A.$\frac{\sqrt{2}}{6}$B.-$\frac{\sqrt{2}}{6}$C.-$\frac{5\sqrt{2}}{6}$D.$\frac{5\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.△ABC中,b-a=c-b=1,且C=2A,則cosC=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,a1=81,公差d=-7,則前( 。╉椇妥畲螅
A.13B.12C.11D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知在平面直角坐標(biāo)系xOy中,角α的終邊在直線y=$\sqrt{2}$x位于第一象限的部分,則sin(α+$\frac{π}{6}$)=(  )
A.$\frac{3\sqrt{2}-\sqrt{3}}{6}$B.$\frac{\sqrt{3}-3\sqrt{2}}{6}$C.$\frac{3\sqrt{2}+\sqrt{3}}{6}$D.-$\frac{\sqrt{3}+3\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足a2=bc+b2,C=75°,則B為(  )
A.35°B.45°C.65°D.25°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù) $z=\frac{{-2\sqrt{3}i}}{{3+\sqrt{3}i}}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將函數(shù)y=2-x的圖象先向下平移2個單位,得到的圖象的函數(shù)表達式為y=2-x-2,然后繼續(xù)向左平移1個單位,最終得到的圖象的函數(shù)表達式又為y=2-x-1-2.

查看答案和解析>>

同步練習(xí)冊答案