16.若正△ABC的邊長為a,其內(nèi)一點P到三邊距離分別為x,y,z,則S△PAB+S△PAC+S△PBC=S△ABC,于是$\frac{1}{2}$ax+$\frac{1}{2}$ay+$\frac{1}{2}$az=S△ABC,x+y+z=$\frac{2{S}_{△ABC}}{a}$.類比推理,求解下面的問題.正四面體棱長為2,其內(nèi)一點M到各個面的距離分別為d1,d2,d3,d4,則d1+d2+d3+d4的值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{6}}{3}$

分析 由平面圖形的性質(zhì)向空間物體的性質(zhì)進行類比時,可以結(jié)合由平面圖形中點的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).

解答 解:類比在正三角形ABC內(nèi)部(不包括邊界)任取一點P,P點到三邊的距離分別為h1,h2,h3,則h1+h2+h3為定值,可得:
P是棱長為a的空間正四面體ABCD內(nèi)的一點,則P點到四個面的距離之和h1+h2+h3+h4為定值,
如圖:連接PA,PB,PC,PD,則三棱錐P-ABC,P-ABD,P-ACD,P-BCD的體積分別為:V1,V2,V3,V4,
由棱長為a可以得到BF=$\frac{\sqrt{3}}{2}$a,BE=$\frac{2}{3}$BF=$\frac{\sqrt{3}}{3}$a,
在直角三角形ABE中,根據(jù)勾股定理可以得到
AE2=AB2-BE2,即AE=$\frac{\sqrt{6}}{3}$a,即h=$\frac{\sqrt{6}}{3}$a,(其中h為正四面體A-BCD的高),
故正四面體的體積V=$\frac{1}{3}×\frac{\sqrt{3}}{4}{a}^{2}×\frac{\sqrt{6}}{3}a=\frac{\sqrt{2}}{12}{a}^{3}$,
正四面體的四個面△ABC,△ACD,△ABD,△BCD的面積均為 $\frac{\sqrt{3}}{4}{a}^{2}$
則V=V1+V2+V3+V4=$\frac{1}{3}$(h1+h2+h3+h4) $\frac{\sqrt{3}}{4}{a}^{2}$
解得:h1+h2+h3+h4=$\frac{\sqrt{6}}{3}$a,
∴即P是棱長為a的空間正四面體ABCD內(nèi)的一點,則P點到四個面的距離之和h1+h2+h3+h4為定值 $\frac{\sqrt{6}}{3}$a.
又正四面體棱長為2,即a=2,
∴定值為$\frac{2\sqrt{6}}{3}$.
故選:D.

點評 本題考查的知識點是類比推理,考查學生的推理論證能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x-1|-2m,g(x)=5-|2x+4|.
(1)解不等式g(x)≤1;
(2)若f(x)≥g(x)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知k為實數(shù),函數(shù)f(x)=|x2-4|-x2-kx,x∈(0,4).
(1)求關(guān)于x的方程f(x)=-kx-3在(0,4)上的解;
(2)若函數(shù)y=f(x)在(0,4)上有且僅有一個零點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知命題P:若冪函數(shù)f(x)=xa過點(2,8).實數(shù)t滿足f(2-t)>f(t-1),命題Q:實數(shù)t滿足2t-1>1,P與Q有且僅有一個為真,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.偶函數(shù)f(x)滿足f(x-1)=f(x+1),當x∈[0,1]時,f(x)=-x+1,那么在區(qū)間[-3,4]上,函數(shù)y=f(x)的圖象與函數(shù)y=ln|x|的圖象的公共點個數(shù)是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.社會調(diào)查表明,家庭月收入x(單位:千元)與月儲蓄y(單位:千元)具有線性相關(guān)關(guān)系,隨機抽取了10個家庭,獲得第i個家庭的月收入與月儲蓄數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=60,$\sum_{i=1}^{10}$yi=15,$\sum_{i=1}^{10}$xiyi=180,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=540.
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)若某家庭月收入為5千元,預測該家庭的月儲蓄.
參考公式:線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在Rt△ABC中,∠BAC=90°,AD⊥BC于點D,AB=2,DB=1,則DC=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知復數(shù)z滿足$\frac{1-i}{z-2}$=1+i,則z在復平面內(nèi)的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)f(x)的圖象恰好通過n(n∈N*)個整點,則稱函數(shù)f(x)為n階整點函數(shù).有下列函數(shù):①f(x)=sin2x;②g(x)=x3;③h(x)=($\frac{1}{4}$)x;④φ(x)=lnx,其中是一階整點函數(shù)的是①④.

查看答案和解析>>

同步練習冊答案