13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為4的正三角形.
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2的直線l與橢圓C相交于A、B兩點(diǎn),若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,求直線l的方程.

分析 (1)由等邊三角形的性質(zhì),求得a與b的值,求得橢圓方程;
(2)設(shè)直線l的方程,代入橢圓當(dāng)成,由向量的坐標(biāo)運(yùn)算及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得m的值,求得直線l的方程.

解答 解:(1)橢圓C的方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),橢圓焦點(diǎn)在x軸上,則c=2,a=2c=4,
b2=a2-c2=12,
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$;(4分)
(2)設(shè)直線的方程為x=my+2,
代入橢圓方程$\left\{\begin{array}{l}{x=my+2}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,整理得(3m2+4)y2+12my-36=0.
設(shè)A(x1,y1),B(x2,y2),焦點(diǎn)F2(2,0),則根據(jù)$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}B}$,得(2-x1,-y1)=2(x2-2,y2),
由此得-y1=2y2
解方程得:y1,2=$\frac{-6m±12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,則y1+y2=-$\frac{12m}{3{m}^{2}+4}$,y1y2=-$\frac{36}{3{m}^{2}+4}$,
代入-y1=2y2,y2=$\frac{12m}{3{m}^{2}+4}$,y22=$\frac{18}{3{m}^{2}+4}$,
得5m2=4,故m=±$\frac{2\sqrt{5}}{5}$,
∴直線的方程為x±$\frac{2\sqrt{5}}{5}$-2=0.(12分)

點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查韋達(dá)定理,向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知直線l:x-y+9=0和橢圓C:$\left\{\begin{array}{l}{x=2\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求橢圓C的兩焦點(diǎn)F1,F(xiàn)2的坐標(biāo);
(2)求以F1,F(xiàn)2為焦點(diǎn)且與直線l有公共點(diǎn)M的橢圓中長(zhǎng)軸最短的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ax3-bx2+cx+b-a(a>0).
(1)設(shè)c=0.
①若a=b,曲線y=f(x)在x=x0處的切線過(guò)點(diǎn)(1,0),求x0的值;
②若a>b,求f(x)在區(qū)間[0,1]上的最大值.
(2)設(shè)f(x)在x=x1,x=x2兩處取得極值,求證:f(x1)=x1,f(x2)=x2不同時(shí)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=4,點(diǎn)E是BB1的中點(diǎn),則D1A與平面AEC所成角的余弦值為( 。
A.$\frac{{\sqrt{15}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{\sqrt{13}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=sinx-2x的導(dǎo)數(shù)是( 。
A.cosx-2xB.cosx-2x•ln2C.-cosx+2xD.-cosx-2x•ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{lnx}{x+1}$.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)對(duì)函數(shù)定義域內(nèi)每一個(gè)實(shí)數(shù)x,f(x)+$\frac{t}{x}$≥$\frac{2}{x+1}$恒成立.
(1)求t的最小值;
(2)證明不等式lnn>$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{n}(n∈{N^*}$且n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.高三(1)班某一學(xué)習(xí)小組的A、B、C、D四位同學(xué)周五下午參加學(xué)校的課外活動(dòng),在課外活動(dòng)時(shí)間中,有一人在打籃球,有一人在畫(huà)畫(huà),有一人在跳舞,另外一人在跑步.
①A不在散步,也不在打籃球;
②B不在跳舞,也不在跑步;
③“C在散步”是“A在跳舞”的充分條件;
④D不在打籃球,也不在跑步;
⑤C不在跳舞,也不在打籃球.
以上命題都是真命題,那么D在畫(huà)畫(huà).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖是某多面體的三視圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,則該多面體的體積為( 。
A.32B.$\frac{64}{3}$C.16D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》有“米谷粒分”題:糧倉(cāng)開(kāi)倉(cāng)收糧,有人送來(lái)米1534石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為(  )
A.1365石B.338石C.169石D.134石

查看答案和解析>>

同步練習(xí)冊(cè)答案