分析 an=$\frac{1}{2}$+n=$\frac{1+2n}{2}$,可得bn=(-1)n+1$\frac{n}{{a}_{n}•{a}_{n-1}}$=$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$于是數(shù)列{bn}的前n項(xiàng)和Tn=$(1+\frac{1}{3})$-$(\frac{1}{3}+\frac{1}{5})$+$(\frac{1}{5}+\frac{1}{7})$-…+$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,對n分類討論即可得出.
解答 解:∵an=$\frac{1}{2}$+n=$\frac{1+2n}{2}$,∴$\frac{1}{{a}_{n}}$=$\frac{2}{2n+1}$,
∴bn=(-1)n+1$\frac{n}{{a}_{n}•{a}_{n-1}}$=$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$
∴數(shù)列{bn}的前n項(xiàng)和Tn=$(1+\frac{1}{3})$-$(\frac{1}{3}+\frac{1}{5})$+$(\frac{1}{5}+\frac{1}{7})$-…+$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,
當(dāng)n為偶數(shù)時,Tn=$1-\frac{1}{2n+1}$=$\frac{2n}{2n+1}$;
當(dāng)n為奇數(shù)時,Tn=$1+\frac{1}{2n+1}$=$\frac{2n+2}{2n+1}$.
點(diǎn)評 本題考查了“裂項(xiàng)求和”、分類討論的思想方法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{3}{2}$ | B. | x=-3 | C. | y=-$\frac{3}{2}$ | D. | y=-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點(diǎn)對稱 | B. | 關(guān)于y軸對稱 | ||
C. | 關(guān)于點(diǎn)($\frac{π}{4}$,0)對稱 | D. | 關(guān)于直線x=$\frac{π}{4}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com