A. | 關(guān)于原點(diǎn)對(duì)稱 | B. | 關(guān)于y軸對(duì)稱 | ||
C. | 關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱 | D. | 關(guān)于直線x=$\frac{π}{4}$對(duì)稱 |
分析 分別由正弦函數(shù)和正切函數(shù)的對(duì)稱性可得.
解答 解:由2x=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z
∴當(dāng)k=0時(shí),可得y=$\sqrt{3}$cos2x的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱,
同理由x-$\frac{π}{4}$=$\frac{kπ}{2}$可得x=x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z
∴可得y=tan(x-$\frac{π}{4}$)的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱,
∴函數(shù)f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱
故選:C
點(diǎn)評(píng) 本題考查三角函數(shù)的對(duì)稱性,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,1) | B. | (2,1) | C. | (1,2) | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2$\sqrt{2}$ | C. | $\sqrt{11}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -6 | C. | 1 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com