【題目】如圖,三棱臺DEF ABC中,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:平面ABED∥平面FGH;
(2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)根據面面平行的判定定理即可證明平面ABED∥平面GHF;連接HE,利用三角形中位線定理可得GH∥AB,于是GH⊥BC.可證明EFCH是平行四邊形,可得HE⊥BC.因此BC⊥平面EGH,即可證明平面BCD⊥平面EGH.
解析:
(1)在三棱臺DEFABC中,BC=2EF,H為BC的中點,BH∥EF,BH=EF,
四邊形BHFE為平行四邊形,有BE∥HF.
BE∥平面FGH
在△ABC中,G為AC的中點,H為BC的中點,GH∥AB.
AB∥平面FGH
又AB∩BE=B,所以平面ABED∥平面FGH.
(2)連接HE,EG
G,H分別為AC,BC的中點,GH∥AB. AB⊥BC,GH⊥BC.
又H為BC的中點,EF∥HC,EF=HC,四邊形EFCH是平行四邊形,有CF∥HE.
CF⊥BC,HE⊥BC.
HE,GH平面EGH,HE∩GH=H,BC⊥平面EGH.
BC平面BCD,平面BCD⊥平面EGH.
科目:高中數學 來源: 題型:
【題目】一條光線從點(﹣2,﹣3)射出,經y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著“互聯(lián)網+交通”模式的迅猛發(fā)展,“共享自行車”在很多城市相繼出現(xiàn).某運營公司為了了解某地區(qū)用戶對其所提供的服務的滿意度,隨機調查了40個用戶,得到用戶的滿意度評分如下:
用系統(tǒng)抽樣法從40名用戶中抽取容量為10的樣本,且在第一分段里隨機抽到的評分數據為92.
(1)請你列出抽到的10個樣本的評分數據;
(2)計算所抽到的10個樣本的均值和方差;
(3)在(2)條件下,若用戶的滿意度評分在之間,則滿意度等級為“級”.試應用樣本估計總體的思想,估計該地區(qū)滿意度等級為“級”的用戶所占的百分比是多少?(精確到)
參考數據:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的平分線所在直線的方程為y=0.
(1)求點A的坐標;
(2)若點B的坐標為(1,2),求點C的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知動圓S過定點P(﹣2 ),且與定圓Q:(x﹣2 )2+y2=36相切,記動圓圓心S的軌跡為曲線C.
(1)求曲線C的方程;
(2)設曲線C與x軸,y軸的正半軸分別相交于A,B兩點,點M,N為橢圓C上相異的兩點,其中點M在第一象限,且直線AM與直線BN的斜率互為相反數,試判斷直線MN的斜率是否為定值.如果是定值,求出這個值;如果不是定值,說明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產品,估計能獲得萬元到萬元的投資利益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過收益的.
()請分析函數是否符合公司要求的獎勵函數模型,并說明原因.
()若該公司采用函數模型作為獎勵函數模型,試確定最小正整數的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ﹣k ln x,k>0.
(1)求f(x)的單調區(qū)間和極值;
(2)證明:若f(x)存在零點,則f(x)在區(qū)間(1, ]上僅有一個零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足:Sn=1﹣an(n∈N*),其中Sn為數列{an}的前n項和. (Ⅰ)試求{an}的通項公式;
(Ⅱ)若數列{bn}滿足: (n∈N*),試求{bn}的前n項和公式Tn .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com