x2+ax+1≤0對x∈[-1,1]恒成立,求a的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:直接由二次不等式對應(yīng)的二次函數(shù)開口向上得到不等式組
f(-1)=1-a+1≤0
f(1)=1+a+1≤0
,解此不等式組得答案.
解答: 解:∵x2+ax+1≤0對應(yīng)的二次函數(shù)y=x2+ax+1開口向上,
要使x2+ax+1≤0對x∈[-1,1]恒成立,
f(-1)=1-a+1≤0
f(1)=1+a+1≤0
,此不等式組無解.
∴使x2+ax+1≤0對x∈[-1,1]恒成立的a的值不存在.
點(diǎn)評:本題考查了函數(shù)恒成立問題,考查了利用“三個二次”的結(jié)合求解參數(shù)問題,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a b為何值時,函數(shù)y=(a-b)sin2x+
a+b
2
cos2x的值恒為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=-x,當(dāng)x<0時,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)-x.
(Ⅰ)求f(x)的最大值;
(Ⅱ)設(shè)g(x)=f(x)-ax2,直線l是曲線y=g(x)的一條切線.證明:曲線y=g(x)上的任意一點(diǎn)不可能在直線l的上方;
(Ⅲ)求證:對任意正整數(shù)n都有
21
21+1
×
22
22+1
×…×
2n
2n+1
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱中ABC-A1B1C1,側(cè)棱CC1⊥底面ABC,且側(cè)棱和底面邊長均為2,D是BC的中點(diǎn)
(1)求證:平面AB1D⊥平面BB1C1C;
(2)求證:A1B∥平面ADC1;
(3)求直線C1A與平面AB1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C與橢圓
x2
9
+
y2
5
=1有相同的焦點(diǎn),且與雙曲線
y2
3
-
x2
9
=1共漸近線,則雙曲線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
1
2
,
n+1
n
an=
n
n-1
an-1+1(n≥2),則數(shù)列{an}的通項an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求數(shù)列{an}的通項公式;
(2)等差數(shù)列{bn}的各項為正,b2=5,又a1+b1,a2+b2,a3+b3成等比數(shù)列,若cn=anbn,求Cn的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊為a,b,c,a=8,B=60°,A=45°,則b=( 。
A、4
2
B、4
3
C、4
6
D、
32
3

查看答案和解析>>

同步練習(xí)冊答案