7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.6C.8D.10

分析 根據(jù)幾何體的三視圖,得出該幾何體是直四棱柱與直四棱錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.

解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是下部為直四棱柱,上部為直四棱錐的組合體,
且四棱柱與四棱錐的底面都是直角梯形,高都是2,
所以該幾何體的體積是
V=$\frac{1}{2}$×(1+2)×2×2+$\frac{1}{3}$×$\frac{1}{2}$×(1+2)×2×2=8.
故選:C.

點(diǎn)評(píng) 本題考查了利用三視圖求幾何體體積的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.給出以下四個(gè)命題:
①若x2+y2=0,則x=y=0
②“若a,b都是偶數(shù),則a+b是偶數(shù)”的逆否命題
③“若x=2,則x2-3x+2=0”的逆命題
④“若兩個(gè)三角形全等,則這兩個(gè)三角形的面積相等”的否命題
其中真命題的序號(hào)是( 。
A.B.①②③④C.①②③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$n(n+1),n∈N*,bn=3n+(-1)n-1an,則數(shù)列{bn}的前2n+1項(xiàng)和為( 。
A.$\frac{{3}^{2n+2}-1}{2}$+nB.$\frac{1}{2}$•32n+2+n+$\frac{1}{2}$C.$\frac{{3}^{2n+2}-1}{2}$-nD.$\frac{1}{2}$•32n+2-n+$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)an=4+$\frac{5}{(-4)^{n}-1}$,bn=a2n-a2n-1,T=b1+b2+…+bn,求證:T<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=4,b3S3=$\frac{15}{4}$.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足:cn=(-1)n(an-2)bn+1,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=3tanωx+1,若對(duì)任意x1,x2∈(-$\frac{π}{3}$,$\frac{π}{4}$)且x1≠x2,均有[f(x1)-f(x2)](x1-x2)<0成立.則實(shí)數(shù)ω的取值范圍是(  )
A.-$\frac{3}{2}$≤ω≤$\frac{3}{2}$B.-$\frac{3}{2}$≤ω≤0C.-2≤ω<0D.-2≤ω≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.f(x)=ax2-x+1有一正零點(diǎn)與一負(fù)零點(diǎn),則a的取值范圍是(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求圓(x-2)2+(y+4)2=36的圓心、半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知下列命題:①要得到函數(shù)y=cos(x-$\frac{π}{6}$)的圖象,需把函數(shù)y=sinx的圖象上所有點(diǎn)向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度;②函數(shù)f(x)=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱;③y=sinωx(ω>0)在區(qū)間[0,1]上至少出現(xiàn)了100次最小值,則ω≥$\frac{399}{2}$π.其中正確命題的序號(hào)是①③.

查看答案和解析>>

同步練習(xí)冊(cè)答案