12.已知函數(shù)f(x)=3tanωx+1,若對任意x1,x2∈(-$\frac{π}{3}$,$\frac{π}{4}$)且x1≠x2,均有[f(x1)-f(x2)](x1-x2)<0成立.則實(shí)數(shù)ω的取值范圍是(  )
A.-$\frac{3}{2}$≤ω≤$\frac{3}{2}$B.-$\frac{3}{2}$≤ω≤0C.-2≤ω<0D.-2≤ω≤2

分析 根據(jù)題意,得出函數(shù)f(x)在(-$\frac{π}{3}$,$\frac{π}{4}$)上是單調(diào)減函數(shù),即ω<0且周期T≥$\frac{2π}{3}$,求出ω的值即可.

解答 解:∵函數(shù)f(x)=3tanωx+1,且對任意x1,x2∈(-$\frac{π}{3}$,$\frac{π}{4}$),
當(dāng)x1≠x2時(shí),均有[f(x1)-f(x2)](x1-x2)<0成立,
∴f(x)在(-$\frac{π}{3}$,$\frac{π}{4}$)上是單調(diào)減函數(shù);
∴函數(shù)f(x)在(-$\frac{π}{3}$,$\frac{π}{3}$)上是單調(diào)減函數(shù),且ω<0;
∴周期T=$\frac{π}{-ω}$≥$\frac{2π}{3}$,∴ω≥-$\frac{3}{2}$;
綜上,實(shí)數(shù)ω的取值范圍是-$\frac{3}{2}$≤ω<0.
故選:B.

點(diǎn)評 本題考查了正切函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知F1(-4,0),F(xiàn)2(4,0),動(dòng)點(diǎn)P滿足||PF1|-|PF2||=4,則點(diǎn)P的軌跡方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{y^2}{4}-\frac{x^2}{12}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.P是拋物線y2=3x上的點(diǎn),則點(diǎn)P到直線3x+4y+9=0的距離的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式|$\frac{1}{2x-1}$|>2的解集為{x|$\frac{1}{2}$<x<$\frac{3}{4}$,或 $\frac{1}{4}$<x<$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點(diǎn).
(1)求證:DB⊥直線EA1;
(2)D1E與BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.三角形ABC中,sinBcosC=cosBcos(A+B),三角形ABC的形狀為鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求直線3x+10y-25=0與橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{4}$=1的交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c.
(1)若sin(A+$\frac{π}{6}$)=2cosA,求A的值;
(2)cosA=$\frac{1}{3}$,b=3c,求證:△ABC是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案