16.“m>2”是“雙曲線${x^2}-\frac{y^2}{m}=1$的離心率大于$\sqrt{2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 先求出雙曲線的離心率e=$\sqrt{m+1}$,所以:先看m>2能否得到$\sqrt{m+1}>\sqrt{2}$,然后看$\sqrt{m+1}>\sqrt{2}$能否得到m>2,從而判斷出“m>2”是“雙曲線${x^2}-\frac{y^2}{m}=1$的離心率大于$\sqrt{2}$”的什么條件.

解答 解:雙曲線的離心率為$\sqrt{m+1}$;
∴(1)若m>2,則雙曲線的離心率$\sqrt{m+1}>\sqrt{3}>\sqrt{2}$;
∴“m>2”是“雙曲線${x}^{2}-\frac{{y}^{2}}{m}=1$的離心率大于$\sqrt{2}$”的充分條件;
(2)若$\sqrt{m+1}>\sqrt{2}$,則m>1;
即得不到m>2;
∴“m>2”不是“雙曲線${x}^{2}-\frac{{y}^{2}}{m}=1$的離心率大于$\sqrt{2}$”必要條件;
綜上得“m>2”是“雙曲線${x}^{2}-\frac{{y}^{2}}{m}=1$的離心率大于$\sqrt{2}$”的充分不必要條件.
故選A.

點(diǎn)評(píng) 考查雙曲線的標(biāo)準(zhǔn)方程,雙曲線離心率的概念及求法,以及充分條件、必要條件、充分不必要條件的概念.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.對(duì)于一組向量$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$(n∈N*),令$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+\overrightarrow{a_3}+…+\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈{1,2,3…,n}),使得|$\overrightarrow{a_p}|≥|\overrightarrow{S_n}-\overrightarrow{a_p}$|,那么稱$\overrightarrow{a_p}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{a_n}$=(n,x+n)(n∈N*),若$\overrightarrow{a_3}$是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,
求實(shí)數(shù)x的取值范圍;
(2)若$\overrightarrow{a_n}=({(\frac{1}{3})^{n-1}},{(-1)^n})$(n∈N*),向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3},…,\overrightarrow{a_n}$是否存在“h向量”?
給出你的結(jié)論并說(shuō)明理由;
(3)已知$\overrightarrow{a_1}、\overrightarrow{a_2}、\overrightarrow{a_3}$均是向量組$\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$的“h向量”,其中$\overrightarrow{a_1}$=(sinx,cosx),$\overrightarrow{a_2}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點(diǎn)列Q1,Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點(diǎn),Q2為$\overrightarrow{a_3}$的位置向量的終點(diǎn),且Q2k+1與Q2k關(guān)于點(diǎn)Q1對(duì)稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點(diǎn)Q2對(duì)稱,求|$\overrightarrow{{Q_{2013}}{Q_{2014}}}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,PD⊥底面ABCD,PD=AD,E為PC的中點(diǎn),F(xiàn)為PB上一點(diǎn),且EF⊥PB.
(1)證明:PA∥平面EDB;
(2)證明:AC⊥DF;
(3)求平面ABCD和平面DEF所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿足:an>0,且對(duì)一切n∈N*,有a13+a23+…+an3=Sn2,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求a1,a2,a3,a4;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并進(jìn)行證明;
(3)證明:$\frac{1}{ln{a}_{2}}$+$\frac{1}{ln{a}_{3}}$+…$\frac{1}{ln{a}_{n}}$>$\frac{3{n}^{2}-n-2}{2n(n+1)}$(n≥2,n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,n∈N+,若an+1=2an+n+1,n∈N+,求數(shù)列的通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知a=$\frac{1}{2}$,b=$\frac{{{{log}_2}3}}{3}$,$c={log_{\frac{1}{2}}}$3,則a,b,c的大小關(guān)系為b>a>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若p,q都為命題,則“p或q為真命題”是“?p且q為真命題”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.用紅、黃、藍(lán)、白、黑五種顏色涂在“田”字形的4個(gè)小方格內(nèi),每格涂一種顏色,相鄰兩格(有公共變邊)涂不同的顏色,如果顏色可以反復(fù)使用,則所有涂色方法的種數(shù)為( 。
A.120B.240C.260D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,已知∠ACB=90°,CA=3,CB=4,點(diǎn)E是邊AB的中點(diǎn),則$\overrightarrow{CE}$•$\overrightarrow{AB}$=( 。
A.2B.$\frac{7}{2}$C.$\sqrt{7}$D.-$\frac{7}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案