11.如圖正四面體(所有棱長都相等)D-ABC中,動點(diǎn)P在平面BCD上,且滿足∠PAD=30°,若點(diǎn)P在平面ABC上的射影為P′,則sin∠P′AB的最大值為( 。
A.$\frac{2\sqrt{7}}{7}$B.$\frac{\sqrt{6}-\sqrt{2}}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 由題意可知:當(dāng)點(diǎn)P取線段CD的中點(diǎn)時,可得到∠P′AB的最大,并且得到sin∠P′AB的最大值.過D作DO⊥平面ABC,可得點(diǎn)O是等邊三角形的中心,連接CO延長與AB相交于點(diǎn)M,CM⊥AB.經(jīng)過點(diǎn)P作PP′⊥CO,垂足為點(diǎn)P′,則PP′⊥平面ABC,點(diǎn)P′為點(diǎn)P在平面ABC的射影,則點(diǎn)P′為CO的中點(diǎn).進(jìn)而得出答案.

解答 解:由題意可知:當(dāng)點(diǎn)P取線段CD的中點(diǎn)時,可得到∠P′AB的最大,并且得到sin∠P′AB的最大值.
過D作DO⊥平面ABC,則點(diǎn)O是等邊三角形的中心,連接CO延長與AB相交于點(diǎn)M,CM⊥AB.經(jīng)過點(diǎn)P作PP′⊥CO,垂足為點(diǎn)P′,則PP′⊥平面ABC,點(diǎn)P′為點(diǎn)P在平面ABC的射影,則點(diǎn)P′為CO的中點(diǎn).
不妨取AB=2,則MP′=$\frac{2}{3}×\sqrt{3}$,∴AP′=$\sqrt{{1}^{2}+(\frac{2\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{21}}{3}$.
sin∠P′AM=$\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{21}}{3}}$=$\frac{2\sqrt{7}}{7}$.
故選:A.

點(diǎn)評 本題考查了正四面體的性質(zhì)、線面垂直的判定與性質(zhì)定理、等邊三角形的性質(zhì)、空間角,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.${({x-\frac{a}{x}})^5}$的展開式中各項(xiàng)系數(shù)的和為-32,則該展開式中系數(shù)最大的項(xiàng)為$\frac{405}{x^3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若函數(shù)f(x)=x|x-a|在[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,A,B,C的對邊分別為$a,b,c,\overrightarrow m=({a,0}),\overrightarrow b=({1,cosB})$,且$\overrightarrow m•\overrightarrow n=2acosB$.
(1)求B的大。
(2)若△ABC的面積為$2\sqrt{3}$,且a+c=6,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.過點(diǎn)P(1,3)的動直線與拋物線y=x2交于A,B兩點(diǎn),在A,B兩點(diǎn)處的切線分別為l1、l2,若l1和l2交于點(diǎn)Q,則圓x2+(y-2)2=4上的點(diǎn)與動點(diǎn)Q距離的最小值為$\sqrt{5}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log3(x+1)的解集是(  )
A.{x|-1≤x≤2}B.{x|-1<x≤2}C.{x|-1<x≤0}D.{x|-1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x軸上,且過點(diǎn)(4,4).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是拋物線上一動點(diǎn),M點(diǎn)是PF的中點(diǎn),求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,cosA=$\frac{3}{5}$,且sinB=$\frac{12}{13}$,則cosC=(  )
A.-$\frac{33}{65}$B.$\frac{33}{65}$C.$\frac{63}{65}$D.$\frac{63}{65}$或$\frac{33}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{xln\frac{1}{|x|}}{|x|}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案