13.下列函數(shù)中在(-1,1)上是減函數(shù)的是( 。
A.y=$\frac{1}{2}$x2B.y=lnxC.y=$\frac{2}{x}$D.y=-$\frac{1}{3}$x3-2x

分析 分別判斷各個函數(shù)的單調(diào)性,從而求出答案.

解答 解:對于A,y=$\frac{1}{2}$x2在(0,1)遞增,不合題意;
對于B,y=lnx,x≤0時無意義,x>0時,遞增,不合題意;
對于C,y=$\frac{2}{x}$,函數(shù)在(-1,0)和(0,1)遞減,在(-1,1)不具有單調(diào)性,不合題意;
對于D,y=-$\frac{1}{3}$x3-2x,y′=-x2-2<0,
∴函數(shù)在(-1,1)遞減,
故選:D.

點評 本題考察了函數(shù)的單調(diào)性問題,考察導數(shù)的應用,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{2}$,連接橢圓的四個頂點得到的菱形的面積為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l過橢圓的左頂點A,且與橢圓相交于另一點B.
(i)若$|AB|=\frac{{4\sqrt{2}}}{5}$,求直線l的傾斜角;
(ii)若點Q(0,y0)在線段AB的垂直平分線上,且$\overrightarrow{QA}•\overrightarrow{QB}=4$,求y0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知某幾何體的三視圖如圖所示,(圖中每一格為1個長度單位)則該幾何體的全面積為4+4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥側(cè)面ABB1A1,AC=AA1=$\sqrt{2}$AB,∠AA1C1=60°.AB⊥AA1,H為棱CC1的中點,D為BB1的中點.
(Ⅰ)求證:A1D⊥平面AB1H;
(Ⅱ)AB=$\sqrt{2}$,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓x2+4y2=16,點M(2,1).
(1)求橢圓的焦距和離心率;
(2)若直線l過點M與橢圓交于A,B兩點,且點M是線段AB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)已知函數(shù)g(x)=1n(1+x)-x+$\frac{k}{2}$x2(k≥0),討論函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓E:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的上、下焦點分別為F1,F(xiàn)2,點D在橢圓上,DF2⊥F1F2,△F1F2D的面積為2$\sqrt{2}$,離心率e=$\frac{\sqrt{2}}{2}$,拋物線C:x2=2py(p>0)的準線l經(jīng)過D點.
(Ⅰ)求橢圓E與拋物線C的方程;
(Ⅱ)過直線l上的動點P作拋物線的兩條切線,切點為A,B,直線AB交橢圓于M,N兩點,當坐標原點O落在以MN為直徑的圓外時,求點P的橫坐標t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知四棱錐P-ABCD中,底面ABCD是正方形,邊長為4,PA=PD=$\sqrt{13}$,側(cè)面PAD⊥底面ABCD,在四棱錐內(nèi)放一個球,要使它的體積最大,則球的半徑為( 。
A.3B.2C.1D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是一正方體被截去一部分后所得幾何體的三視圖,則被截去部分的幾何體的表面積為54+18$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案