18.已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知函數(shù)g(x)=1n(1+x)-x+$\frac{k}{2}$x2(k≥0),討論函數(shù)g(x)的單調(diào)性.

分析 (1)對(duì)函數(shù)f(x)=x3-ax2-3x進(jìn)行求導(dǎo),轉(zhuǎn)化成f′(x)在[1,+∞)上恒有f′(x)≥0,求出參數(shù)a的取值范圍;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論k的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,從而求出g(x)的單調(diào)性問(wèn)題.

解答 解:(1)y=3x2-2ax-3,
∵f(x)在[1,+∞)上是增函數(shù),
∴f′(x)在[1,+∞)上恒有f′(x)≥0,
即3x2-2ax-3≥0在[1,+∞)上恒成立.
則必有$\frac{a}{3}$≤1且f′(1)=-2a≥0,
∴a≤0;
實(shí)數(shù)a的取值范圍是(-∞,0];
(2)函數(shù)g(x)的定義域是(-1,+∞),
g′(x)=$\frac{1}{x+1}$-1+kx=$\frac{x[kx+(k-1)]}{x+1}$,
①k=0時(shí),g′(x)=-$\frac{x}{x+1}$,
令g′(x)>0,解得:x<0,令g′(x)<0,解得:x>0,
∴g(x)在(-1,0)遞增,在(0,1)遞減;
②0<k<1時(shí),-$\frac{k-1}{k}$>0,
令g′(x)>0,解得:x>-$\frac{k-1}{k}$或x<0,
令g′(x)<0,解得:0<x<-$\frac{k-1}{k}$,
∴g(x)在(-1,0)遞增,在(0,-$\frac{k-1}{k}$)遞減,在(-$\frac{k-1}{k}$,+∞)遞增;
③k≥0時(shí),-$\frac{k-1}{k}$≤0,
令g′(x)>0,解得:x<-$\frac{k-1}{k}$或x>0,
令g′(x)<0,解得:-$\frac{k-1}{k}$<x<0,
∴g(x)在(-1,-$\frac{k-1}{k}$)遞增,在(-$\frac{k-1}{k}$,0)遞減,在(0,+∞)遞增.

點(diǎn)評(píng) 主要考查函數(shù)單調(diào)性的綜合運(yùn)用,函數(shù)的單調(diào)性特征與導(dǎo)數(shù)之間的綜合應(yīng)用能力,把兩個(gè)知識(shí)加以有機(jī)會(huì)組合.特別,在研究函數(shù)的單調(diào)區(qū)間或決斷函數(shù)的單調(diào)性時(shí),三個(gè)基本步驟不可省,一定要在定義域內(nèi)加以求解單調(diào)區(qū)間或判斷單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知四面體各面都是邊長(zhǎng)為13,14,15的全等三角形.
(1)求此三棱錐的體積;
(2)求頂點(diǎn)D到底面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知矩形ABCD的邊AB=4,BC=3,若沿對(duì)角線AC折疊,使得平面DAC⊥平面BAC,則三棱柱D-ABC的體積$\frac{24}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥DC,DB平分∠ADC,E為PC的中點(diǎn),AD=CD=1,DB=2$\sqrt{2}$,PD=2.
(1)證明:平面PAC⊥平面PBD;
(2)求三棱錐B-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)中在(-1,1)上是減函數(shù)的是( 。
A.y=$\frac{1}{2}$x2B.y=lnxC.y=$\frac{2}{x}$D.y=-$\frac{1}{3}$x3-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某幾何體的三視圖如圖所示,其中俯視圖是正方形,那么該幾何體的表面積是( 。
A.32B.24C.$4+12\sqrt{2}$D.$12\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P滿足|PF1|+|PF2|>2a,則(  )
A.點(diǎn)P在橢圓C外B.點(diǎn)P在橢圓C內(nèi)
C.點(diǎn)P在橢圓C上D.點(diǎn)P與橢圓C的位置關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ax+(1-a)lnx+$\frac{1}{x}$,(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a<0時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),斜率為1且過(guò)橢圓右焦點(diǎn)F的直線l交橢圓于M,N兩點(diǎn),且$\overrightarrow{OM}$+$\overrightarrow{ON}$=λ(3,-1).
(1)求$\frac{a}$的值;
(2)試證明直線OM的斜率k1與直線ON的斜率k2的乘積k1•k2為定值,并求該定值;
(3)設(shè)A為橢圓上任意一點(diǎn),且滿足$\overrightarrow{OA}$=α($\overrightarrow{OM}$+$\overrightarrow{ON}$)+β$\overrightarrow{MN}$(α,β∈R),求αβ的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案